
There has been a steady decline in the number of new 
drugs developed per US dollar spent on research and 
development (R&D) in the pharmaceutical industry1. 
Investment has grown from $10 billion to $60 billion per 
year, with the number of new molecular entities remain-
ing steady at ~20 per year. In trying to understand why 
the cost per successful drug has risen dramatically, per-
haps the most important observation is that less than 
5% of the molecules that enter Phase I clinical trials are 
eventually approved as safe and effective therapeutics  
by the US Food and Drug Administration (FDA)2,3. 
That is, the cost of drug development is not dominated 
by the cost of the few programmes that succeed, but 
instead by the amortized cost of the other programmes 
that fail during clinical trials3.

Thus, perhaps the most crucial question is: why do 
drugs fail? Analyses have shown that most failures are 
in Phase II trials, and at least 50% of these are due to 
lack of efficacy and 25% due to toxicity2,4. These fail-
ures occur despite the fact that the initiation of clinical  
trials is essentially always preceded by evidence that 
the drug candidate engages its target in vitro and is safe 
and effective in preclinical models. It follows that high 
failure rates indicate a key issue in drug discovery: the 
limited ability of preclinical disease models to predict 
benefit in patients3.

In this Review, we highlight the crucial importance 
of the therapeutic hypothesis at the stage when a protein 
or biomolecule is nominated as a potential drug target 
(often referred to as target validation). In this context, 
‘therapeutic hypothesis’ refers to the hypothesis that per-
turbing a target in a given manner will benefit patients 
and have minimal (or at least acceptable) toxicity (FIG. 1). 
Ideally, data for validating a therapeutic hypothesis 
would be derived from the patient population of inter-
est and would involve direct perturbation of a target with 
a known function in a known direction. The result of 
the perturbation would be followed in many patients for 
many years, leading to the accumulation of all possible 
clinical outcomes. Finally, it would be ideal to obtain 
all of this information before a clinical trial is initiated. 
Strictly speaking, the only truly validated targets are 
those that are already successfully modulated by a safe 
and effective therapeutic. But for many diseases there is 
a lack of highly effective approaches for prevention and 
treatment, and so new mechanisms of action are needed.

Preclinical dose–response curves

The central feature of the therapeutic hypothesis is 
predicting a dose–response relationship between tar-
get perturbation and efficacy (or toxicity) in humans 
(FIG. 2a). Therefore, we argue that a primary goal of any 
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Abstract | More than 90% of the compounds that enter clinical trials fail to demonstrate 

sufficient safety and efficacy to gain regulatory approval. Most of this failure is due to the 

limited predictive value of preclinical models of disease, and our continued ignorance 

regarding the consequences of perturbing specific targets over long periods of time in 

humans. ‘Experiments of nature’ — naturally occurring mutations in humans that affect the 

activity of a particular protein target or targets — can be used to estimate the probable 

efficacy and toxicity of a drug targeting such proteins, as well as to establish causal rather 

than reactive relationships between targets and outcomes. Here, we describe the concept 

of dose–response curves derived from experiments of nature, with an emphasis on human 

genetics as a valuable tool to prioritize molecular targets in drug development. We discuss 

empirical examples of drug–gene pairs that support the role of human genetics in testing 

therapeutic hypotheses at the stage of target validation, provide objective criteria to 

prioritize genetic findings for future drug discovery efforts and highlight the limitations  

of a target validation approach that is anchored in human genetics.
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Preclinical models

Any of a broad range of 

approaches to support  

the therapeutic hypothesis 

before a drug is tested in  

a clinical trial. 

Therapeutic hypothesis

The hypothesis that perturbing 

a target in a given manner 

leads to patient benefit 

(efficacy with minimal toxicity). 

Target validation

The process of gathering 

information about a potential 

drug target prior to initiating a 

screen to find biological or 

chemical modulators of the 

target of interest.

First-in-class drug

A drug that is the first to  

target a new biological 

mechanism of action.

Alleles

DNA sequence variations 

between two chromosomes 

(for example, one maternal 

chromosome and one  

paternal chromosome). 

preclinical model should be to generate sufficient data 
to mimic a dose–response curve as early as possible in 
drug development.

Such complete dose–response data are generally only 
known for drugs with molecular structures or mechanisms 
of action that are very similar to approved drugs (often 
dubbed ‘me too’ drugs). Because a similar approved drug is 
known to be safe and effective, there is very strong support 
for the therapeutic hypothesis for ‘me too’ drugs (which 
may be the result of parallel competition between com-
panies or follow-on products developed after a first‑in‑class 

drug has made it to market)5. Of course, adopting a 
‘follow-on’ strategy will not lead to the development of 
new molecular entities that act on novel biological targets.

Fortunately, there are alternative data sources to 
identify novel drug targets6, each within a hierarchy of 
evidence that approaches the ideal circumstance of a 
target that is already validated by a therapeutic. Such 
data may be derived from cellular or animal model sys-
tems, human epidemiology (for example, cholesterol 
in heart disease), in vivo expression studies in disease 
tissues (for example, inflammatory cytokines in auto-
immune disease), natural conditions that alter human 
physiology (for example, using thyroid replacement to 
treat patients with hypothyroidism) or human genetics  
(for example, alleles that raise or lower low-density 
lipoprotein (LDL) cholesterol levels influence the risk 
of heart disease).

Figure 1 | The therapeutic hypothesis. a | There are three different ways to modulate a target: human mutations  
can increase or decrease the function of a gene through gain-of-function or loss-of-function alleles; drugs can 

pharmacologically increase or decrease target function; and naturally occurring conditions may increase or decrease the 

amount of a target, thereby increasing or decreasing its function. b | By modulating the function of a target (x axis), it is 
possible to assess its effect on a biological phenotype (y axis) such as cellular signalling or receptor levels. The red points 
on the graph indicate a dose-dependent relationship between target function and biological phenotype, as loss of 

function of a target leads to reduced (low) biological activity (phenotype), whereas gain of function leads to increased 
(high) biological activity. By contrast, the blue points indicate that modulating target function has no effect on biological 
phenotype or activity. c | Target modulation can be correlated with clinical outcomes in patients to assess for efficacy and 
toxicity. For example, if increased target function (represented by the red points on the graph in panel b) is associated 
with clinical symptoms, it follows that decreased target function should be an effective treatment to restore health. 

Ideally, the results of target modulation would be monitored in many patients for many years, leading to the accumulation 

of all possible clinical outcomes. d | Early events are more likely to be causal than events that are observed only after the 
onset of disease symptoms and sequelae. If genetic mutations, drug perturbations and natural conditions precede clinical 

outcome, then it is possible that a ‘cause and effect’ relationship can be established. By contrast, observations that are 
only made in individuals with a disease (for example, through in vivo expression or epidemiology studies) may be the 
cause or the effect of the underlying disease process.
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‘Experiments of nature’

Naturally occurring human 

conditions or states that 

modulate a biological target 

with a reproducible effect on 

human physiology; in the 

context of drug discovery, 

these experiments mimic  

the effect of therapeutic 

modulation of the target.

Experiments of nature at the top of the hierarchy

‘Experiments of nature’, which represent naturally occur-
ring human conditions or states that modulate a bio-
logical target with a reproducible effect on human 
physiology, occupy a prominent position in the hier-
archy of evidence to support the therapeutic hypothesis.  
In the context of drug discovery, these natural experi-
ments mimic the effect of therapeutically modulating the 
target and provide a mechanism to estimate dose–response 
curves before a clinical trial is initiated. In essence, they 
are nature’s equivalent of clinical trials with an established 
therapeutic.

This concept is well illustrated by the historical 
example of human conditions that alter the amount of 
cortisol, which is a naturally occurring steroid secreted 
by the adrenal gland that is under the control of the 
hypothalamic–pituitary axis in the brain. Today, steroid 
derivatives (for example, hydrocortisone) are routinely 
used as anti-inflammatory drugs for several clinical con-
ditions, including the autoimmune disease rheumatoid 
arthritis.

In the 1930s, however, the hormones secreted by the 
adrenal cortex were unknown, and the effect of these 
hormones on human physiology and disease was also 

Figure 2 | Dose–response curves derived from experiments of nature. a | A basic dose–response curve is shown, in 
which the x axis represents the dose of a drug required to modulate a target, and the y axis represents the phenotype 
that is related to target modulation. b | Steroids and rheumatoid arthritis. Naturally occurring conditions such as 
pregnancy or stress increase the amount of endogenous corticosteroids, whereas other conditions such as adrenal 

insufficiency decrease the amount of endogenous corticosteroids. These natural conditions influence disease activity in 
patients with rheumatoid arthritis (disease activity represents efficacy; a high phenotypic response corresponds to low 
disease activity and few rheumatoid arthritis symptoms). They also provide an estimate of potential side effects, which 
lead to toxicity (for example, steroid-induced elevated blood glucose levels). For simplicity, adverse events associated 
with low cortisol levels are not shown. c | Low-density lipoprotein (LDL) levels and cardiovascular disease. Variants in 
different genes can lead to variations in the levels of LDL cholesterol, which can have a predictable effect on the risk of 
cardiovascular disease. Rare loss-of-function mutations in the LDL receptor (LDLR) gene lead to familial hypercholesterol-
aemia (FH) in homozygotes; gain-of-function mutations in the proprotein convertase subtilisin kexin 9 (PCSK9) gene 
increase LDL levels and the risk of cardiovascular disease, whereas PCSK9 loss-of-function mutations have the opposite 

effect. Furthermore, a common DNA variant in the HMG-CoA reductase (HMGCR) gene, as well common variants  
in other gene loci discovered through genome-wide association studies (GWASs), have shown that there is a small  
but statistically robust association between LDL levels and the risk of cardiovascular disease. d | Cystic fibrosis 
transmembrane conductance regulator (CFTR) mutations and cystic fibrosis. A series of causal alleles that alter  
the function of the CFTR protein demonstrate a dose–response relationship. A drug, ivacaftor, can increase the 
function of the CFTR protein in patients with a specific genotype, thereby improving clinical symptoms.
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unknown. A confluence of events at the Mayo Clinic, led 
by Dr Phillip Hench (a rheumatologist) and Dr Edward 
Kendall (a chemist studying hormones secreted by the 
adrenal gland), resulted in a series of studies culminating  
in a Nobel Prize7. Hench observed that the symptoms 
of patients with rheumatoid arthritis improved during 
pregnancy and following temporary stress brought upon 
by surgery — both clinical conditions in which levels of 
endogenous steroid hormones were known to be elevated. 
Hench was also aware of the clinical features shared by 
patients with active rheumatoid arthritis and those with 
Addison’s disease, a form of adrenal insufficiency in 
which levels of endogenous steroids were known to be 
decreased. Finally, both Hench and Kendall were aware of 
the reported anti-inflammatory activity of corticosteroids 
in animal models. Together, they developed a therapeu-
tic hypothesis that cortisol would suppress the clinical 
symptoms of rheumatoid arthritis. On 21 September 
1948, Hench teamed up with Kendall to perform the first 
administration of cortisone, a metabolite of cortisol, to 
patients with rheumatoid arthritis. They observed an 
immediate and substantial improvement in symptoms, 
referring to cortisol as “Nature’s dramatic antidote”7. 

In this example, there were several features that 
enabled an estimate of the dose–response curve for the 
efficacy and safety of corticosteroids in patients with 
rheumatoid arthritis (FIG. 2b). Naturally occurring con-
ditions resulted in higher levels (for example, in preg-
nancy and stress) or lower levels (for example, in adrenal 
insufficiency) of endogenous steroids in patients with 
rheumatoid arthritis, thereby providing an estimate of 
the effects of modulating the ‘target’ (in this case, corti-
sol itself) on the symptoms of patients with rheumatoid 
arthritis. Furthermore, these conditions provided an 
estimate of the adverse events associated with excess ster-
oids (for example, diabetes, weight gain, hypertension and 
osteoporosis). The clinical conditions represented per-
turbations in humans, thereby providing a direct link 
with human disease (rheumatoid arthritis). And the 
perturbations occurred in a temporal sequence, which 
helped to differentiate between cause and consequence.

There are other examples of experiments of nature 
that led to drug discovery: the development of HMG-
CoA reductase inhibitors (statins) is a noteworthy 
success story8. In the 1950s, a biological link between 
cholesterol and heart disease was established, following  
epidemiological studies examining the relationship 
between blood cholesterol (and other potential risk fac-
tors) and death from coronary disease. Rare families with 
familial hypercholesterolaemia provided further support 
for a causal link between LDL cholesterol and heart dis-
ease. These patients have mutations in the LDL receptor 
(LDLR) gene, leading to high levels of LDL cholesterol 
and an increased risk of heart disease9,10. Furthermore, 
a dose–response relationship was observed between 
function (the number and type of LDLR mutations) 
and pheno type (LDL cholesterol levels and risk of 
heart disease), as shown in FIG. 2c. Individuals with two 
mutated LDLR alleles (familial hypercholesterolaemia 
homozygotes) are more severely affected than those 
with one mutant allele (familial hypercholesterolaemia 

heterozygotes), and familial hypercholesterolaemia 
homozygotes with a null allele (no LDLR activity) are 
more severely affected than familial hypercholesterolae-
mia homozygotes with a defective allele (these individuals 
have LDLR activity, but it is reduced relative to wild-type 
individuals).

As HMG-CoA reductase was known to be the rate-
limiting enzyme in the cholesterol biosynthetic pathway, 
it represented a compelling drug target. Natural products 
found in the fermentation broth of Penicillium citrinum 
(compactin) and Aspergillus terreus (lovastatin) inhibited 
HMG-CoA reductase activity and lowered levels of LDL 
cholesterol in animal models. Clinical trials that were 
initially carried out in selected small groups of patients 
with severe heterozygous familial hypercholesterol-
aemia, and then in the general population or in patients 
at a very high risk of myocardial infarction, demonstrated 
the safety and efficacy of lovastatin11. Ultimately, treat-
ment with statins proved the correlation between LDL 
levels and an increased risk of heart disease.

An emerging story that further supports the thera-
peutic hypothesis for LDL cholesterol levels and the 
risk of heart disease relates to proprotein convertase 
subtilisin kexin 9 (PCSK9). In 2003, two families with 
autosomal dominant high LDL levels and an increased 
incidence of coronary heart disease were found to have 
rare gain-of-function mutations in the PCSK9 gene12. 
Subsequent candidate gene association studies revealed 
that PCSK9 loss-of- function mutations observed at a low 
frequency in the general population (~1%) correlated 
with reduced levels of LDL cholesterol and a reduced 
incidence of coronary heart disease13–15. Animal models  
revealed that PCSK9 is involved in the post-translational 
regulation of LDLR activity, thereby providing a mecha-
nistic link between PCSK9 and LDL cholesterol levels16,17. 
Then, in 2012, randomized control trials were published 
that demonstrated that PCSK9-specific monoclonal 
antibodies significantly reduced LDL cholesterol lev-
els in healthy volunteers as well as in individuals with 
hypercholesterolaemia18–20.

Even genetic variants with a subtle effect on LDL cho-
lesterol and myocardial infarction can point to successful 
targets for cardiac prevention. For example, a common, 
non-coding genetic polymorphism (rs3846663) in the 
gene that encodes HMG-CoA reductase (HMGCR) has 
a small influence on LDL cholesterol levels and on the 
risk of cardiovascular disease in the general population21. 
Furthermore, an aggregate genetic risk score, which is 
the sum total of the effect of all alleles that influence LDL 
cholesterol levels, directly correlates with the risk of 
cardiovascular disease in the general population (FIG. 2c). 
This is in contrast to individual alleles or a genetic risk 
score for HDL cholesterol, for which there is no obvious 
correlation with the risk of cardiovascular disease, as 
described in more detail below.

Thus, as with rheumatoid arthritis and cortisol, the 
example of LDL cholesterol and heart disease repre-
sents an experiment of nature (FIG. 2c), where naturally 
occurring conditions (genetic variations in the LDLR, 
PCSK9 and HMGCR genes) modulate a target in a 
dose-dependent manner in humans, thereby providing  

R E V I E W S

584 | AUGUST 2013 | VOLUME 12  www.nature.com/reviews/drugdisc

© 2013 Macmillan Publishers Limited. All rights reserved



Inherited DNA variation

A variation in DNA sequence 

that is passed from the parent 

to the offspring according  

to the rules of Mendelian 

segregation.

Causal alleles

DNA variants that are 

responsible for influencing  

a clinical phenotype.

Complex traits

Diseases that do not segregate 

within families according to 

obvious rules; the underlying 

genetic cause is often highly 

polygenic and substantially 

influenced by environmental 

and stochastic factors.

a causal link between function and phenotype in a 
temporal sequence that precedes the clinical outcome 
of interest (such as heart disease).

Incomplete supporting packages

The examples of cortisol and LDL cholesterol represent 
relatively complete packages that relied not only on natu-
rally occurring conditions in humans but also on strong 
supporting evidence from biology, epidemiology and ani-
mal models. Even with such strong supporting evidence, 
the development of steroids and statins was not without 
uncertainty and risk. However, packages to support novel 
therapeutic hypotheses can often be substantially less 
complete.

TABLE 1 lists various preclinical models for target vali-
dation6. In general, each model on its own is insufficient 
to support the therapeutic hypothesis, as each one has 
limitations for providing evidence to support or refute a 
therapeutic hypothesis for a given drug target. These lim-
itations relate to four characteristics: target modulation 
(the ability to modulate a target of interest to achieve a 
desired effect on a biological pathway); human relevance 
(the ability to demonstrate the relevance of a target to a 
human disease process); causality in humans (the ability 
to determine whether a target perturbation is a cause or 
consequence of a human disease process); and mecha-
nism of action (the ability to understand the relationship 
between the biological mechanism of the underlying 
model and the human disease state). 

A target that emerges from an animal model has 
the great advantage of being tractable. Controlled 
experiments can establish a dose–response relationship 
between function and phenotype. That is, a target can 
be modulated through genetics or pharmacology, and 
the animal model can be studied to determine how a 
biological process is altered. However, the major limita-
tion of an animal model is determining the relevance of 
the target to human disease. In addition, animal models 
cannot establish whether target modulation is a cause or 
a consequence of human disease.

Human epidemiology is highly relevant to human dis-
ease, but on its own it cannot be used to prove causality.  
One example is the relationship between high-density 
lipo protein (HDL) cholesterol and heart disease22. 
Epidemiological studies suggested that pharmacologi-
cal manipulation to raise HDL levels would lower the 
risk of myocardial infarction. Based on this theory, drugs 
that inhibit cholesteryl ester transfer protein (CETP), 
which promotes the transfer of cholesterol from HDL 
to LDL, thereby raising HDL levels, should protect 
against heart disease23. However, the clinical trial data on 
CETP inhibitors do not yet support the epidemiological 
data24. Furthermore, a missense N396S mutation in the 
endothelial lipase (LIPG) gene raises HDL cholesterol 
levels but does not lower the risk of myocardial infarc-
tion25. It remains to be determined whether other CETP 
inhibitors have a different efficacy profile or whether 
drugs that raise HDL levels through other mechanisms 
will lower the risk of myocardial infarction.

The main advantages of human genetics for validat-
ing therapeutic targets are that human genetics is highly 
relevant to human disease and can differentiate between 
cause and consequence. However, there are also sev-
eral limitations. First, human genetics relies on DNA 
mutations and human evolution for the introduction of 
inherited DNA variation (alleles) into a gene target, and con-
sequently not all gene targets will have disease-causing 
alleles. Once identified, causal alleles represent a natural 
perturbation of a potential therapeutic target; see BOX 1 
for approaches to establish a causal link between a target 
and a clinical phenotype for Mendelian and complex traits. 
Furthermore, those genes that do harbour causal alleles 
might not have multiple alleles to allow the establishment 
of a genotype–phenotype dose–response curve in the 
same way as for LDL cholesterol levels (FIG. 2c).

Second, although human genetics provides a link 
between a natural perturbation and a physiological pro-
cess of interest, it can be quite challenging to understand 
the mechanistic implications of the causal allele. Similarly, 
although human genetics can differentiate cause from 

Table 1 | Characteristics of preclinical models for target validation*

Target modulation Human relevance Causality in humans Mechanism of action

Cellular models Highly effective Ineffective Ineffective Effective, but with 
some limitations

Animal models Highly effective Effective, but with 
some limitations

Ineffective Highly effective

Human 
epidemiology

Effective, but with 
some limitations

Highly effective Ineffective Effective, but with 
some limitations

In vivo expression 
studies

Effective, but with 
some limitations

Highly effective Ineffective Effective, but with 
some limitations

Natural  
conditions

Effective, but with 
some limitations

Highly effective Highly effective Effective, but with 
some limitations

Human genetics Effective, but with 
some limitations

Highly effective Effective, but with 
some limitations

Effective, but with 
some limitations

*Target modulation is the ability to modulate a target of interest to achieve a desired effect on a biological pathway; human 
relevance is the ability to demonstrate the relevance of a target to a human disease process; causality in humans refers to the ability 
to determine whether a target perturbation is a cause or consequence of a human disease process; and the mechanism of action is 
the ability to understand the relationship between the biological mechanism of the underlying model and the human disease state. 
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Genetic architecture

The underlying genetic basis 

for a phenotypic trait; variables 

include: the number of causal 

genes (monogenic, oligogenic 

or polygenic); the population 

frequency of causal alleles 

(common, low‑frequency or 

rare); and the effect size of the 

causal alleles (small effect 

reflecting low penetrance,  

or large effect reflecting high 

penetrance).

Genetic locus

A location or region of the 

genome; the boundaries of  

a locus can be defined by 

linkage disequilibrium  

blocks or other factors.

Functional alleles

Alleles to which a biological 

function can be ascribed; 

examples include differential 

gene expression or mRNA 

splicing, or differences in 

protein‑coding sequence.

consequence because alleles are present from birth and 
thus before the onset of human disease, functional stud-
ies are required to understand the biological mechanisms 
involved. Last, human genetics might link a target per-
turbation to a disease trait, but the factors that lead to the 
disease might differ considerably from the factors that 
need to be modulated in order to treat the disease.

Building a complete package

In setting out to test the therapeutic hypothesis, a prac-
tical consideration is how to build a complete package 
that is based on preclinical models, each of which has 
its own limitations. We argue that it is better to first 
anchor target validation to a preclinical model that has 
relevance to human disease and can be used to differen-
tiate between cause and consequence, and only then to 

try and understand the effect of target modulation and 
the biological mechanism of action. That is, we believe 
that there is great value in anchoring target validation 
to ‘experiments of nature’ such as naturally occurring 
conditions or human genetics. Below, we describe how 
to overcome the limitations of human genetics to build a 
complete package for testing the therapeutic hypothesis. 
In essence, the goal is to generate dose–response curves 
that are based on human genetics.

Target modulation. The underlying concept is that causal 
alleles represent natural perturbations of a drug target. 
In the ideal circumstance, a gene target would harbour a 
series of functional alleles that provide a range of perturba-
tions, and these alleles would be correlated with function 
(see below) and clinical outcome. Some alleles would be 

Box 1 | Genetic architecture of Mendelian and complex diseases

Genetic architecture refers to the number, effect size and population frequency of causal alleles. Here, we compare and 

contrast the genetic architecture of Mendelian diseases and complex traits, and briefly describe statistical approaches 

to identify causal alleles and causal genes. We also describe how causal alleles from both disease categories provide 

information on target modulation.

Mendelian diseases segregate faithfully within a family according to Mendel’s laws. For a given family, the underlying 

genetic architecture is generally a single mutation (that is, the causal allele) in one gene that is rare in the general 

population and highly penetrant in family members who inherit the mutation. Often, the causal mutation disrupts the 

protein-coding structure of a gene, thereby pinpointing the causal gene. Examples of Mendelian diseases include 

cystic fibrosis and Marfan’s syndrome. The cystic fibrosis gene, cystic fibrosis transmembrane conductance regulator 

(CFTR)27, was identified in 1989 and the Marfan’s syndrome gene, fibrillin 1 (FBN1)102, was identified in 1991.

By contrast, complex diseases do not segregate within families according to Mendel’s rules. Examples include 

rheumatoid arthritis, type 2 diabetes and myocardial infarction. In a population of affected individuals, the underlying 
genetic architecture for a given disease is often highly polygenic and substantially influenced by environmental and 

stochastic factors. Advances in genomic technology have facilitated the identification of loci for complex traits; 

these advances include a draft sequence of the human genome, a catalogue of common DNA polymorphisms103, 

high-throughput methods to genotype hundreds of thousands of single-nucleotide polymorphisms (SNPs) and 

statistical methods to analyse extremely large data sets104. These advances led to the first generation of genome-wide 

association studies (GWASs), which identified alleles that are associated with a variety of complex traits104. To date, 

GWASs and related methods have identified nearly 3,000 loci for approximately 300 complex human traits, as 

reported in the US National Human Genome Research Institute (NHGRI) GWAS catalogue105 (see the ‘Catalogue of 

Published Genome-Wide Association Studies’ for further information). 

Several themes have emerged from GWASs that shed light on the genetic architecture of complex traits: hundreds 

(if not thousands) of alleles contribute to the risk of developing any given complex disease101,106; each allele has a small 

effect on risk; and most alleles discovered to date are common in the general population (but this is a biased estimate, 

as only common alleles have been tested by contemporary GWASs).

In contrast to Mendelian diseases, it is more challenging to identify causal mutations and genes in complex disease. 
This is due to a number of factors: the alleles associated with the risk of a complex disease are often outside the coding 

regions; there are often many SNPs that are highly correlated with the top SNP (known as linkage disequilibrium); 

there is no obvious causal allele that can be identified from the SNPs that are in linkage disequilibrium with each other; 

and there are often many genes in the region (or genetic locus). A few themes have emerged, however. For example, 

the majority of causal alleles associated with complex traits are likely to influence gene expression rather than protein 

sequence42,107; occasionally one allele is an obvious functional allele (for example, one that changes the protein-coding 

structure of a gene), which helps to pinpoint the causal allele and causal gene; by comparing genes across multiple 

risk loci for a given disease, it is often possible to select the most likely causal gene108,109; and some loci may contain 

independent variants that are associated with disease, providing an allelic series that helps to identify the causal gene 

and enables the exploration of disease biology46,110.

For target validation, complete loss-of-function mutations (usually observed in Mendelian diseases) provide 

different information compared with common alleles that have modest effects (observed in complex traits). If a gene 
is completely knocked out (a homozygous loss-of-function mutation), this provides the maximal phenotypic effect 

on target modulation. By contrast, alleles with a subtle effect on function indicate that modulation of the target 

influences clinical outcome; however, these alleles do not easily provide a broad range of biological or clinical effects 

on target modulation. In an ideal situation, a gene would harbour a series of causal alleles with a broad range of 
biological effects (from gain-of-function alleles to loss-of-function alleles) to generate function–phenotype dose–

response curves.
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Function–phenotype  

dose–response curves

An assessment of the effect  

of modulating the function of  

a target on a biological 

phenotype in a way that 

mirrors the traditional  

dose–response curves of  

drug efficacy and toxicity  

from clinical trials.

Causal gene

A gene that, when perturbed 

by a mutation, leads to  

a clinical phenotype.

Genome-wide  

association studies

(GWASs). Comprehensive 

testing of genetic variants in  

a collection of individuals to 

see whether any variant is 

associated with a trait; 

contemporary GWASs are 

limited to testing common 

variants, although newer 

technologies allow the testing 

of low‑frequency variants.

Single nucleotide 

polymorphisms 

(SNPs). DNA sequence 

variations that occur when  

a single nucleotide — A, T, C  

or G — differs between  

paired chromosomes.

Linkage disequilibrium 

A non‑random correlation of 

alleles at a locus (or region) of 

the genome, such that some 

combinations of alleles in a 

population are observed more 

frequently than would be 

expected by chance; the extent 

of linkage disequilibrium can be 

measured by the square of  

the correlation coefficient (r2); 

non‑random recombination 

across the genome during the 

course of human history  

results in blocks of linkage 

disequilibrium (often 

containing multiple genes).

complete loss-of-function alleles, which — when inher-
ited in the homozygous state — would mimic a state 
in which there is complete pharmacological inhibition 
of the target. Other alleles would be gain-of-function 
alleles, which would allow further examination of the 
relationship between function and phenotype in both 
the heterozygous and homozygous states. By combin-
ing all of these data, it should be possible to generate  
function–phenotype dose–response curves that share prop-
erties similar to those of drug dose–response curves.

A noteworthy example of function–phenotype dose–
response curves comes from cystic fibrosis and mutations 
in the gene encoding cystic fibrosis transmembrane con-
ductance regulator (CFTR)26; see FIG. 2d. Cystic fibrosis is 
an autosomal recessive disease that leads to pulmonary 
dysfunction. The causal gene, identified in 1989 through 
linkage analysis27, is CFTR. To date, more than 1,800 
independent alleles have been identified that cause 
cystic fibrosis28. Heterozygous carriers of null CFTR 
mutations, which include the most common causal allele 
ΔF508, are asymptomatic even though their cells only 
have 50% function of the CFTR protein. Homozygous  
carriers of loss-of-function alleles have no CFTR activity 
and a severe clinical phenotype. Patients who inherit 
CFTR alleles with 10–20% function have a mild cystic 
fibrosis phenotype, thereby indicating that restoration 
of CFTR function to this level should improve clinical 
symptoms in patients with severe disease. Indeed, iva-
caftor (Kalydeco; Vertex Pharmaceuticals) — a drug that 
enhances CFTR function — improves clinical outcomes 
in patients with a specific genotype29.

Another example of function–phenotype dose–
response curves comes from rare mutations in the 
SCN9A gene, which encodes the voltage-gated sodium 
channel Nav1.7 (REF. 30). Gain-of-function mutations in 
SCN9A have been identified in rare families with pri-
mary erythermalgia (intermittent burning pain with 
redness and heat in the extremities)31–35. In addition, rare 
loss-of-function mutations in SCN9A have been identi-
fied in families with a congenital inability to perceive 
any form of pain. Based on these genetic data, drugs 
that block the Nav1.7 sodium channel are now under 
development to treat pain in the general population36,37.

Biological mechanism. To generate function–phenotype 
dose–response curves, the biological effect of causal alleles 
on gene function must be experimentally determined.  
In particular, it is important to know whether causal alleles 
result in a gain of function or a loss of function, as this 
will help guide whether a therapy should inhibit or activate 
the target. In some instances, it may be easy to predict the 
biological function based on the mutations and pheno-
types themselves. This is particularly true for mutations 
that dramatically change the protein-coding structure of 
a gene. For example, deletions and nonsense mutations in 
the Janus kinase 3 (JAK3) gene cause an autosomal reces-
sive form of severe combined immunodeficiency (SCID)38. 
This observation was useful in the development of drugs 
to treat rheumatoid arthritis, in which JAK3 inhibition by 
the drug tofacitinib (Xeljanz; Pfizer) is effective in treating 
symptoms related to systemic inflammation39,40.

In other instances, the functional consequences of 
causal alleles are less obvious. Functional studies in mice 
and humans demonstrated that for Marfan’s syndrome 
the causal mutations in the gene fibrillin 1 (FBN1) result 
in loss of function of the fibrillin 1 protein. However, 
these mutations result in enhanced transforming growth 
factor-β (TGFβ) activation and signalling at the cellular 
level — a mechanism that was not previously appreciated 
in the pathophysiology of this disease41.

Unravelling the biological mechanism for alleles that 
influence the risk of complex diseases, most of which 
have been identified by genome‑wide association studies 

(GWASs), is especially challenging (BOX 1). Based on 
current knowledge, causal alleles that are responsible 
for most complex traits fall outside of protein-coding 
sequences42. For example, in a recent study of inflam-
matory bowel disease (IBD), 29 IBD-associated single  

nucleo tide polymorphisms (SNPs) — out of a total 
of 193 SNPs from 163 loci — were in strong linkage  

dis equilibrium with a protein-coding missense variant43.  
By contrast, 64 IBD-associated SNPs (33%) are in linkage 
disequilibrium with variants that are known to regulate 
gene expression. If a risk allele increases the expression 
of a gene that is a positive regulator of a pathway, then it 
follows that an effective drug might inhibit that particu-
lar gene or signalling pathway; this has been predicted 
for a non-coding variant in the CD40 gene that increases 
the risk of rheumatoid arthritis44,45,111. For some GWAS 
loci that have been implicated by GWASs for influenc-
ing complex traits, independent and rare protein-coding 
variants can pinpoint the causal gene and provide fur-
ther insight into its biological function, as observed for 
the caspase recruitment domain-containing protein 9 
(CARD9) gene in IBD46.

Biological pathways. If the indication for treatment is 
reduction of active disease (rather than prevention),  
and if human genetics is used to identify and validate 
targets, then it must be the case that the biological path-
ways that lead to disease are also relevant to symptoms 
in established disease. Two illustrative examples are the 
autoimmune diseases type 1 diabetes and rheumatoid 
arthritis. In type 1 diabetes the immune system destroys 
the pancreas, thereby preventing insulin secretion and the  
control of blood glucose levels. Once diagnosed, the pri-
mary treatment for type 1 diabetes is the administration of 
insulin to maintain glucose homeostasis. Human genetics 
has identified many alleles associated with the risk of 
type 1 diabetes, nearly all of which act on the immune 
system47. Thus, drugs that are developed based on the 
genetics of type 1 diabetes might be expected to prevent 
disease in susceptible individuals but not to treat the dis-
ease once the pancreas has been destroyed.

By contrast, in patients with rheumatoid arthritis the 
immunological pathways that lead to the disease also 
seem to be related to the immunological pathways that 
contribute to symptoms in patients with established 
disease. As direct proof of concept, several genes that 
are implicated in the pathogenesis of rheumatoid arthri-
tis are the targets of drugs that are effective therapies 
for this disease; for example, cytotoxic T lymphocyte 
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Mendelian diseases

Diseases that segregate 

faithfully within a family 

according to Mendel’s laws;  

for a given family, the underlying 

genetic cause is generally a 

single mutation that is rare in 

the general population and 

highly penetrant in family 

members who inherit the 

mutation. 

antigen 4 (CTLA4) is targeted by abatacept (Orencia; 
Bristol-Myers Squibb)48 and interleukin-6 receptor 
(IL6R) is targeted by tocilizumab (Actemra; Roche)49. 

Thus, to build a complete package that is based 
on human genetics, it is important to identify a series 
of causal alleles in a gene target of interest (known as 
target modulation) and to understand the functional 
consequences of causal alleles (that is, the biological 
mechanism) in order to generate function–phenotype 
dose–response curves. Moreover, there must be a con-
nection between the disease state used in the genetic 
study and the disease state for the drug indication.

Historical support for genetics in target validation

The discussion above implies that identifying alleles that 
contribute to the risk of a disease or related medical traits 
(for example, LDL cholesterol, inflammation or pain) can 
be a productive strategy for identifying relevant drug 
targets for such diseases. An obvious question is whether 
there is historical precedence to support this view. Below, 
we provide examples of gene–drug pairs where a single 
gene is implicated by human genetics, and a drug directed 
against that gene is an effective therapeutic target. A more 
complete list of gene–drug pairs50–55 is shown in TABLE 2.

It is useful to consider three categories of gene–
drug pairs: drugs that are in development or have been 
approved for which human genetics had a major role 
in their development (referred to as prospective exam-
ples); approved drugs that were developed without strong 
human genetics data, but for which human genetics sub-
sequently identified the drug target as being important 
(referred to as retrospective examples); and drugs that 
were developed for a particular indication, but human 
genetics data suggested another indication (referred to as 
repurposing examples).

In addition to the examples of LDLR (for which 
>1,000 pathogenic mutations have been reported)56 and 
PCSK9 discussed above, another prospective example is 
the development of 5-alpha-reductase inhibitors. Rare 
families with pseudohermaphroditism have mutations in 
the steroid-5-alpha-reductase α-polypeptide 2 (SRD5A2) 
gene, which leads to a deficiency of the male hormone 
dihydrotestosterone57,58. The finding that male patients 
with SRD5A2 mutations have small prostates and lack 
male pattern baldness led to the development of 5-alpha-
reductase inhibitors (for example, finasteride) for the 
treatment of benign prostatic hyperplasia and mild to 
moderate hair loss57,59.

There are several examples of approved drugs that 
were developed without direct human genetics data, but 
for which human genetics subsequently identified the drug 
target as being important. A recent study systematically 
examined the US National Human Genome Research 
Institute (NHGRI) GWAS catalogue for links between 
gene–drug pairs60. Examples of gene–drug pairs (and their 
respective diseases) from this and other studies include: 
HMGCR–statins (for the treatment of hyperlipid aemia)21,61; 
peroxisome proliferator-activated receptor-γ (PPARG)–
thiazolidinediones (for the treatment of type 2 dia betes)62; 
CTLA4–abatacept (for the treatment of rheumatoid 
arthritis)48; IL12B–ustekinumab (for the treatment of  

psoriasis and Crohn’s disease)43,63; and receptor activator  
of NF-κB ligand (RANKL; also known as TNFSF11)–
denosumab (for the treatment of osteoporosis)64. 

There are also examples of the third category: drugs 
that were developed for a particular indication but have 
been ‘repurposed’ for another indication. For Marfan’s 
syndrome, mechanistic studies of FBN1 were integrated 
with data demonstrating that angiotensin II receptor 
blockers decreased TGFβ signalling, which allowed 
these drugs to be repurposed from an existing indica-
tion (hypertension) to improve outcomes for patients 
with Marfan’s syndrome who have aortic root dilation65.

Another repurposing example is that of comple-
ment inhibitors for the treatment of age-related macu-
lar degeneration (AMD). Before 2005, the complement 
pathway had not been widely implicated in the patho-
genesis of AMD. One of the first GWASs in any complex 
trait identified a common, missense mutation (Y402H) 
in the complement factor H (CFH) gene as an indica-
tor of an increased risk of AMD66. Subsequent genetic 
studies confirmed the role of the complement pathway 
in AMD, including the discovery that multiple inde-
pendent alleles in CFH influence the risk of AMD67–69. 
As complement inhibitors had been developed for the 
treatment of other diseases (for example, sepsis and par-
oxysmal nocturnal haemoglobinuria)70, they have since 
been repurposed for the treatment of AMD, and several 
clinical trials are underway in this setting71. Other com-
plement inhibitors are also under development for the 
treatment of AMD (for example, inhibitors of comple-
ment factor D and of complement factor C3)72, which 
indicates the overlap between developing new com-
pounds and repurposing existing compounds. Other 
repurposing examples73–82 are shown in TABLE 2.

Criteria for gene–drug pairs in target validation

Based on a conceptual framework for the role of preclini-
cal models in target validation (FIG. 1; TABLE 1) and his-
torical examples of gene–drug pairs (TABLE 2), we propose 
a set of criteria for the application of genetic findings 
to target validation (BOX 2). The criteria are agnostic to 
frequency, penetrance or the effect size of the associated 
alleles. That is, these criteria can be applied to genetic 
discoveries made from Mendelian diseases as well as com-
plex traits. The goal is to apply these criteria, which have 
been ordered by importance below, to help prioritize 
research on the most promising targets and ultimately 
nominate a gene product as the target for a drug develop-
ment programme.

The gene harbours a causal variant that is unequivocally 

associated with a medical trait of interest. It is crucial 
that the genetic finding is robust. We do not provide 
strict guidelines for statistical significance, as these issues 
have been discussed exclusively elsewhere in the litera-
ture83–86. The bottom line is that one must be convinced, 
beyond any doubt, that the genetic variant influences 
the trait of interest. Consistent replication of the genetic 
finding is one of the most important measures of sig-
nificance. Furthermore, the variant must be the causal 
allele (that is, not a proxy or marker SNP). This criterion 
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Table 2 | Gene–drug pairs

Gene Allele (or 
alleles) 

Drugs Disease or 
indication

Genetic approach Comments Refs

Prospective examples

LDLR Many Statins Hyperlipidaemia Biochemical LDLR mutations indicated that the LDL 
cholesterol pathway is critical in the risk of 
heart disease

9,10

SRD5A2 Many Finasteride Benign prostate 
hyperplasia

Biochemical Rare SRD5A2 mutations lead to 
pseudohermaphroditism

57–59

PCSK9 Many Compounds in 
clinical trials

Hyperlipidaemia Linkage and 
family-based 
sequencing; 
candidate gene 
sequencing

S127R and F216L were the first 
gain-of-function mutations; Y142X and C679X 
were the first nonsense mutations

12–15

SCN9A Many Compounds in 
development

Pain Linkage and 
family-based 
sequencing

Loss-of-function nonsense mutations include 
S459X, I767X and W897X

30–32

BCL11A rs4671393 Compounds in 
clinical trials

Sickle cell 
anaemia

GWAS Non-coding allele; BCL11A repressors increase 
fetal haemoglobin levels in sickle cell anaemia

50–52

CFTR Many Ivacaftor; 
compounds in 
clinical trials

Cystic fibrosis Linkage and 
family-based 
sequencing

The first mutation identified was ΔF508; the 
CFTR potentiator ivacaftor was developed for a 
specific genotype (G551D) 

27,28

LMNA Many Compounds in 
clinical trials

Hutchinson–
Gilford progeria 
syndrome (HGPS)

Linkage and 
family-based 
sequencing

Mutations in LMNA cause a broad range of 
human diseases, including the premature aging 
seen in HGPS; the most common mutation is a 
point mutation in exon 11 that does not alter an 
amino acid (G608G)

53–55

Retrospective examples

HMGCR rs3846663 Statins Hyperlipidaemia GWAS A non-coding allele discovered by GWASs may 
affect the alternative splicing of exon 13

21,61

PPARG rs1801282 Thiazolidin ediones Type 2 diabetes Candidate gene 
study

The more common allele encodes the amino 
acid proline and contributes to the risk of 
diabetes

62

CTLA4 rs3087243 Abatacept Rheumatoid 
arthritis

Candidate gene 
study

A non-coding allele may alter the expression 
of the ratio of soluble to full-length CTLA4 
isoforms

48

IL12B rs12188300 Ustekinumab Psoriasis GWAS Non-coding allele; a different allele (rs6871626) 
is associated with Crohn’s disease

43,63

RANKL rs9533090 Denosumab Osteoporosis GWAS Also known as TNFSF11; a non-coding allele 
has been discovered by GWASs

64

Repurposing examples

CFH Several Eculizumab AMD GWAS Missense mutations include Y402H and A69S; 
complement inhibitors are under investigation 
for AMD

66–69

IL6R D358A Tocilizumab Coronary artery 
disease

GWAS-related 
approach using 
custom bead chip

An IL-6R-targeted therapy is approved for 
rheumatoid arthritis and under investigation 
for coronary artery disease

73

IL1 Many Anakinra Autoinflammatory 
disease

Linkage and 
family-based 
sequencing

Mutations in NLRP3, TNFR1, IL1RN and MEFV 
lead to elevated IL-1 levels

74

FBN1 Many Angiotensin II 
receptor blockers

Marfan’s 
syndrome

Linkage and 
family-based 
sequencing

FBN1 mutations lead to elevated TGFβ levels, 
and angiotensin II receptor blockers inhibit 
TGFβ signalling

79,102 

SMN1 Many Riluzole Spinal muscular 
atrophy

Linkage and 
family-based 
sequencing

The first mutations were gene deletions; based 
on phenotypic screening, riluzole is in clinical 
trials for the treatment of spinal muscular 
atrophy

80–82

AMD, age-related macular degeneration; BCL11A, B cell lymphoma 11A; CFH, complement factor H; CFTR, cystic fibrosis transmembrane conductance regulator; 
CTLA4, cytotoxic T lymphocyte antigen 4; FBN1, fibrillin 1; GWAS, genome-wide association study; IL1, interleukin-1; IL6R, IL-6 receptor; LDLR, low-density 
lipoprotein receptor; LMNA, lamin A/C; PCSK9, proprotein convertase subtilisin kexin 9; PNH, paroxysmal nocturnal haemoglobinuria; PPARG, peroxisome  
proliferator-activated receptor-γ; RANKL, receptor activator of NF-κB ligand (also known as TNFSF11); SCN9A, voltage-gated sodium channel Nav1.7; SMN1, 
survival of motor neuron 1; SRD5A2, steroid-5-α-reductase α-polypeptide 2.
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is especially important for variants that have been discov-
ered by GWASs, as the associated SNP is likely to be a 
proxy for the true causal allele owing to patterns of linkage 
disequilibrium.

The biological function of the causal gene and causal 

variant are known. It is important to know the biologi-
cal effect of the associated variant, especially whether 
the variant results in a gain or loss of function. Studies in 
human tissues are invaluable for understanding the effects 
of individual alleles, and animal models can be very help-
ful in understanding the function of the gene itself.

The gene harbours multiple causal variants of known 

biological function. The observation that multiple alleles 
of the gene influence the trait, or a related trait, pro-
vides evidence for genotype–phenotype dose–response 
curves (as discussed above for LDLR, PCSK9 and 
CFTR). Ideally, the causal alleles would be in the same 
gene (for example, in CFTR). Alternatively, the causal 
alleles might reside in different genes (for example, in 
LDLR, PCSK9 and HMGCR) that converge on a com-
mon biological pathway (for example, LDL cholesterol 
levels). These alleles might be common or rare; coding 
or non-coding; gain-of-function or loss-of-function. The 
important point is that multiple causal alleles of known 
function help to calibrate the phenotypic consequences 
of target modulation over a range (FIG. 1). For Mendelian 
diseases, multiple unrelated families are required to find 
independent alleles; for complex traits, deep sequenc-
ing in large case–control populations — or in families 
with highly penetrant forms of the disease related to the 
complex trait — is required to find independent alleles.

The gene harbours a loss-of-function allele that protects 

against disease, or a gain-of-function allele that increases 

the risk of disease. The rationale behind this criterion is 
that it is easier to develop drugs that are inhibitors rather 
than activators of protein targets. The loss-of-function 
PCSK9 variants that protect from coronary heart disease, 
and the gain-of-function PCSK9 mutations that increase 
the risk of coronary heart disease, represent excellent 
examples. Moreover, if a gene is completely knocked 

out (as in homozygous loss-of-function mutations), this 
provides the maximal phenotypic effect on target modu-
lation. Indeed, there is great interest in annotating all 
variants that are predicted to result in loss of function in 
the human genome in order to prioritize drug targets87. 
Mutations that introduce premature stop codons into 
genes often result in truncated proteins that have com-
pletely lost their function. Mutations that change a con-
served amino acid from one polarity group to another 
can be predicted to be damaging by computational algo-
rithms such as PolyPhen-2 or SIFT88,89. Gain-of-function 
mutations are more difficult to predict based on compu-
tational methods alone. For both gain-of-function and 
loss-of-function mutations, direct experimentation is 
required to demonstrate function.

The genetic trait is related to the clinical indication tar-

geted for treatment. As described for type 1 diabetes and 
rheumatoid arthritis, the biological pathways that lead to 
disease might be different from the biological pathways 
that cause symptoms. Accordingly, the clinical indication 
for drug development must be precisely defined, and 
supporting evidence must link the biological pathways 
underlying the genetic trait to the biological pathways 
related to the clinical indication being targeted for treat-
ment. As an example, a loss-of-function mutation in the 
amyloid precursor protein (APP) gene protects against 
Alzheimer’s disease and cognitive decline90. If this find-
ing is replicated, as suggested by a small follow-up 
study91, it offers hope that pharmacological blockade 
of this gene or pathway will be an effective therapy to 
prevent Alzheimer’s disease. Whether an APP inhibitor 
or drugs that act through a related mechanism (for exam-
ple, β- and γ-secretase inhibitors) are effective at improv-
ing cognition in patients with established disease will be 
dependent on whether the biological pathways that lead 
to Alzheimer’s disease are the same as those that cause 
impaired cognition in patients with established disease.

The variant is also associated with an intermediate 

phenotype that can be used as a biomarker. PCSK9 
serves as a good example of a variant that can also be used 
as a biomarker: loss-of-function alleles are associated 
with lower LDL cholesterol levels (and protect against 
coronary heart disease), whereas gain-of-function alleles 
are associated with higher LDL cholesterol levels (and 
increase the risk of coronary heart disease). As a con-
sequence, LDL cholesterol levels can be used as a bio-
marker in clinical trials for the development of PCSK9 
inhibitors18,19. For some alleles, a relevant biomarker may 
be developed during the course of functional studies, 
which can then be used during clinical trials.

The variant is within a gene that is ‘druggable’. One 
of the challenges for human genetics is that only a 
subset of potential drug targets are ‘druggable’ using 
standard chemistry and assays. Thus, human genetics 
may uncover exciting new targets, but if these are not 
druggable then little is gained. However, what is con-
sidered druggable at present is likely to change in the 
future92. For example, kinases used to be considered 

Box 2 | Criteria for gene–drug pairs in drug discovery

• The gene harbours a causal variant that is unequivocally associated with a medical 

trait of interest

• The biological function of the causal gene and causal variant are known

• The gene harbours multiple causal variants of known biological function, thereby 

enabling the generation of genotype–phenotype dose–response curves

• The gene harbours a loss-of-function allele that protects against disease, or a 

gain-of-function allele that increases the risk of disease

• The genetic trait is related to the clinical indication targeted for treatment

• The causal variant is associated with an intermediate phenotype that can be used  

as a biomarker

• The gene target is druggable

• The causal variant is not associated with other adverse event phenotypes

• Corroborating biological data support genetic findings
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Spectrum of alleles 

Somewhat arbitrary thresholds 

for the frequency of alleles 

observed in the general 

population; ‘common alleles’ 

are those that are observed  

in >5% of the general 

population; ‘low‑frequency 

alleles’ are those that are 

observed in 0.1–5% of the 

general population; and ‘rare 

alleles’ are private to families; 

in practical terms, alleles that 

are common or low‑frequency 

can be catalogued in a 

reference population (for 

example, the International 

HapMap Project) to facilitate 

testing in another population 

(for example, patients), 

whereas rare alleles must be 

discovered and tested in the 

same individuals.

‘undruggable’ but now are druggable. New chemical 
approaches and assay development are needed to make it 
possible to pursue those targets with the strongest evidence 
from human biology.

The variant is not associated with other phenotypes 

that might be considered adverse events. An interest-
ing aspect of human genetics that can be used to predict 
on-target side effects is whether the variant is associated 
with other phenotypes that could be considered adverse 
events. This serves as a form of Mendelian randomiza-
tion93,94. If a drug inhibits the function of a gene product, 
then it would be useful to know whether there are any 
adverse clinical consequences of an allele that knocks 
out the function of the same gene. For example, it is pos-
sible to evaluate clinical phenotypes of complete PCSK9 
inhibition in the general population from a handful of 
individuals who are homozygous null for PCSK9 loss-
of-function mutations. In this regard, genetic data in 
patients who are followed for long periods of time — 
such as prospective cohorts or patients with clinical data 
from electronic medical records — serve as a valuable 
resource for estimating potential adverse events.

Corroborating biological data support genetic findings. 
Genetic data should be integrated with other aspects of 
disease biology, including animal models, epidemiologi-
cal studies and in vivo expression studies. If non-genetic 
data support the implicated role of the associated gene, 
then this substantially strengthens the relevance of the 
gene to disease. For instance, if the associated gene (such 
as PCSK9) has an orthologue with supporting data from 
animal models for a related phenotype, or if the associ-
ated gene is part of a family of genes (that is, a paralogue) 
for which there are validated therapeutic targets, then 
this strengthens its prioritization as a drug target.

From GWASs in complex diseases to drug target

Given the wealth of data emerging on the genetics 
of complex diseases from GWASs, how might these 
genetic data be used to select drug targets? Although 
most alleles associated with complex diseases (approxi-
mately 85%) fall outside the protein-coding sequence, 
each disease-associated allele should be evaluated to see 
whether it is in linkage disequilibrium with a variant 
that changes the protein structure (for example, a non-
synonymous mutation or truncating mutations that 
introduce a premature stop codon). If it is, then these 
findings should be fast tracked for functional studies in 
human cells and animal models to assess gain of func-
tion or loss of function. For non-coding risk alleles, the 
effect on gene expression (expression quantitative trait 
loci) should be evaluated in a relevant human cell type. 
If a risk allele is associated with higher gene expression, 
then pharmacological inhibition may be effective in 
treating the disease.

Ultimately, however, we believe that an allelic series 
will be most valuable for prioritizing which genes impli-
cated by GWASs for complex diseases should be fol-
lowed up for drug discovery. That is, if multiple alleles 
modulate gene function in a way that can be linked to 

a phenotype that is a good surrogate for drug efficacy, 
then this provides strong evidence that pharmacological 
modulation of the same target will also be effective at 
treating the disease. To find an allelic series, large-scale 
genetic studies, including whole-genome sequencing 
studies in large patient cohorts, are required to define 
the complete spectrum of alleles (from common to rare 
alleles). Although these studies are expensive, the cost 
is modest when compared to the cost of the entire drug 
discovery process, which has recently been estimated 
to approach ~$2 billion when failures are taken into 
account3. Indeed, a drug discovery programme that is 
anchored in human genetics many actually lower costs, 
as discussed briefly below.

Limitations of genetics-based target validation

Although some limitations of target validation based 
on human genetics have been described above, several 
important limitations are revisited again here. First, not 
all genes in the human genome will have an allelic series 
to derive function–phenotype dose–response curves. 
Many safe and effective drugs have been developed with-
out any direct genetic evidence, and there is little direct 
evidence to date that genetic data would have identified 
the target (or targets) of these drugs. As one example, 
biologics that target the inflammatory cytokine tumour 
necrosis factor (TNF) are remarkably effective at treat-
ing rheumatoid arthritis, but genetics alone has not yet 
identified TNF as a drug target.

Second, the complexity between genetic diathesis 
and disease pathogenesis should not be underestimated.  
We have emphasized that human genetics represents the 
first step towards a complete package for drug develop-
ment. Substantial investments in functional follow-up 
studies — in humans, animal models and cellular 
models — will be crucial for realizing the potential of 
human genetics in drug discovery. In some instances, an 
approach that is anchored in human genetics may slow 
down a drug discovery programme, especially if human 
genetics identifies a drug target for which the biology 
is not well understood or that does not conform to the 
existing model of disease pathogenesis.

Third, disease-associated alleles, especially those dis-
covered by GWASs, often have a very small effect on 
the overall risk of disease. Direct testing is required to 
determine whether exaggerated pharmacological modu-
lation of the same target will have an effect beyond that 
observed from human genetics. For example, a common 
polymorphism in HMGCR, which has a very small effect 
on variation in LDL cholesterol levels in the general pop-
ulation95, highlights that the relationship between genetic 
perturbation and pharmacological modulation is not a 
one-to-one relationship. In fact, based on HMGCR and 
other examples cited above, we believe that a key feature 
of human genetics is to identify which targets — when 
perturbed — will lead to safe and effective therapies; 
human genetics may not directly indicate how much 
target modulation is optimal to treat disease. An allelic 
series with a range of effects may help to overcome this 
limitation, if such gain-of-function and loss-of-function 
alleles can be identified.

R E V I E W S

NATURE REVIEWS | DRUG DISCOVERY  VOLUME 12 | AUGUST 2013 | 591

© 2013 Macmillan Publishers Limited. All rights reserved



1. Scannell, J. W., Blanckley, A., Boldon, H. & 

Warrington, B. Diagnosing the decline in 

pharmaceutical R&D efficiency. Nature Rev. Drug 

Discov. 11, 191–200 (2012).

2. Kola, I. & Landis, J. Can the pharmaceutical industry 

reduce attrition rates? Nature Rev. Drug Discov. 3, 

711–715 (2004).

3. Paul, S. M. et al. How to improve R&D productivity: 

the pharmaceutical industry’s grand challenge.  

Nature Rev. Drug Discov. 9, 203–214 (2010).

This article provides a good perspective on the 

challenges facing the pharmaceutical industry, 

including the need for better preclinical models  

to validate drug targets.

4. Arrowsmith, J. Trial watch: phase II failures: 2008–2010. 

Nature Rev. Drug Discov. 10, 328–329 (2011).

5. DiMasi, J. A. & Faden, L. B. Competitiveness in 

follow-on drug R&D: a race or imitation? Nature Rev. 

Drug Discov. 10, 23–27 (2011).

6. Wehling, M. Assessing the translatability of drug 

projects: what needs to be scored to predict  

success? Nature Rev. Drug Discov. 8, 541–546 

(2009).

7. Glyn, J. The discovery and early use of cortisone. 

J. R. Soc. Med. 91, 513–517 (1998).

8. Tobert, J. A. Lovastatin and beyond: the history of  

the HMG-CoA reductase inhibitors. Nature Rev.  

Drug Discov. 2, 517–526 (2003).

9. Brown, M. S. & Goldstein, J. L. Expression of the 

familial hypercholesterolemia gene in heterozygotes: 

mechanism for a dominant disorder in man. Science 

185, 61–63 (1974).

10. Rader, D. J., Cohen, J. & Hobbs, H. H. Monogenic 

hypercholesterolemia: new insights in pathogenesis and 

treatment. J. Clin. Invest. 111, 1795–1803 (2003).

11. The Lovastatin Study Group II. Therapeutic response to 

lovastatin (mevinolin) in nonfamilial hypercholesterolemia. 

A multicenter study. JAMA 256, 2829–2834 (1986).

12. Abifadel, M. et al. Mutations in PCSK9 cause 

autosomal dominant hypercholesterolemia. Nature 

Genet. 34, 154–156 (2003).

This is the first study to describe a gain-of- 

function mutation in PCSK9 that causes 

hypercholesterolaemia.

13. Cohen, J. et al. Low LDL cholesterol in individuals of 

African descent resulting from frequent nonsense 

mutations in PCSK9. Nature Genet. 37, 161–165 

(2005).

Potential for reduced attrition and lower costs

At the beginning of this article, we highlighted the issue 
of the increasing costs of drug development, which 
are driven primarily by drug failures in Phase II and 
Phase III clinical trials3. Despite the limitations of human 
genetics cited above, it does have the potential to have 
a major impact on the cost of drug development. It is 
estimated that a reduction in Phase II attrition from 66% 
to 50% would decrease the cost per new molecular entity 
by ~$0.5 billion, and a reduction in Phase III attrition 
from 30% to 20% would decrease costs by ~$0.3 billion3. 
Accordingly, the most obvious practical application of 
human genetics in drug development is to increase the 
probability that therapeutic modulation of a target will 
yield a drug that is safe and effective in humans (that is, 
decrease the rate of attrition).

During the course of functional studies to understand 
the biological consequences of disease-associated alleles, 
it is likely that biomarkers will be developed that can 
serve as surrogate end points for early proof-of-concept 
studies. An appealing strategy is a ‘quick win, fast fail’ 
paradigm3, in which proof-of-concept mechanistic 
studies are filled with drugs that emerge from human 
genetics. Only those molecules that engage their target 
(or targets) and have a desired pharmacological activity in 
humans — a stringent test of the therapeutic hypothesis 
— would be advanced into Phase II studies. 

Human genetics may also help to deprioritize drug 
development programmes that were started without the 
benefit of human genetic data, if genetic data do not sup-
port the therapeutic hypothesis. One example, as discussed 
above, is alleles that are associated with HDL cholesterol 
and the development of drugs to raise HDL cholesterol and 
prevent cardiovascular disease.

Thus, we argue that an increased investment in 
R&D — and, specifically, in large-scale human genet-
ics studies and functional follow-up studies to estimate 
dose–response curves at the stage of target validation 
— will result in an overall decrease in the cost of drug 
development.

Pathway-based approach

In this article, we have focused almost exclusively on an 
approach that uses human genetics to identify a series 
of alleles that are associated with a human trait and that 
could be used to derive dose–response curves at the time 
of target validation. However, a complementary approach 

is to use human genetics to uncover biological pathways 
that are important in human disease, and then to use a 
pathway-based approach to conduct high-throughput  
screens96. A pathway-based approach is appealing 
because it attempts to model the complex relationships 
between human genetic perturbations and disease.

There are an increasing number of computational 
strategies to derive biological insight from human genetics 
data97,98. When coupled with high-throughput biological 
strategies to interrogate networks99,100, a pathway-based 
approach may prove to be quite powerful. For example,  
genes that are involved in bone mineral density are 
mapped in or near genes encoding proteins that are 
involved in pharmacological pathways related to osteo-
porosis: for example, TNFSF11 encodes RANKL, 
TNFRSF11B encodes osteoprotegerin, TNFRSF11A 
encodes RANK, parathyroid hormone-like hormone 
(PTHLH) encodes the parathyroid hormone-related 
protein (PTHRP), LRP5 encodes LDLR-related pro-
tein 5, SOST encodes sclerostin and DKK1 encodes 
Dickkopf-related protein 1 (REF. 64). The strengths and 
limitations of the pathway-based approach are of great 
interest but beyond the scope of this Review.

Conclusions

The ideal preclinical model would provide a reliable esti-
mate of the dose–response relationships between target 
perturbation and efficacy or safety in humans. In theory, 
experiments of nature that are based on human genetic 
variation can be used to generate dose–response curves 
at the time of target validation, and there are compelling 
examples that demonstrate the utility of such knowledge 
in drug discovery. The ultimate success, however, will 
depend on whether the criteria outlined in BOX 2 can be 
fulfilled for novel drug targets. To accomplish this vision, 
there is a pressing need to continue and expand large-
scale disease consortia to discover the complete spec-
trum of alleles (from common to rare alleles) associated 
with complex traits. Given the underlying architecture 
of complex traits101, this is likely to require genome-wide 
sequencing in large patient collections. Furthermore, 
collaborations between geneticists and biologists will be 
required to link mutations with function in cells derived 
from humans. If genetics can unlock novel genotype–
phenotype relationships, then this will provide substan-
tial new therapeutic opportunities for many diseases that 
are currently inadequately treated.
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