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The characterization of primary immunodeficiencies (PIDs) in
human subjects is crucial for a better understanding of the
biology of the immune response. New achievements in this field
have been possible in light of collaborative studies; attention
paid to new phenotypes, infectious and otherwise; improved
immunologic techniques; and use of exome sequencing
technology. The International Union of Immunological Societies
Expert Committee on PIDs recently reported on the updated
classification of PIDs. However, new PIDs are being discovered
at an ever-increasing rate. A series of 19 novel primary defects
of immunity that have been discovered after release of the
International Union of Immunological Societies report are
discussed here. These new findings highlight the molecular
pathways that are associated with clinical phenotypes and
suggest potential therapies for affected patients. (J Allergy Clin
Immunol 2013;131:314-23.)
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Known primary immunodeficiencies (PIDs) include individu-
ally rare but collectively diverse genetic defects that influence
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the development, function, or both of immunity. Taken in a broad
sense, these disorders encompass both the hematopoietic and
nonhematopoietic arms of host defense. They result in a wide
range of clinical symptoms, including but not limited to suscep-
tibility to infections, autoimmunity, inflammation, allergy, and
malignancy.1 Significant progress in the field has recently accel-
erated thanks to collaborative work around the world; improved
techniques to analyze leukocyte subsets; attention paid to new
phenotypes, such as infections selectively caused by certain
pathogens in otherwise healthy children2; and use of high-
throughput next-generation sequencing technology (eg, whole-
exome sequencing).3 The International Union of Immunological
Societies (IUIS) Expert Committee on PIDs published the bien-
nial update of the classification of PIDs in a recent article dated
November 2011.4 However, the continuously growing number
and variety of PIDs make this type of classification difficult
and perhaps calls for a revised approach.5,6 In this review we
focus on the 19 new PIDs that appeared in the literature after
the release of the last IUIS report. Some of these reports include
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only a single case, making it difficult to confidently predict the
clinical phenotype; however, each new disorder provides valu-
able insights into the pathways that normally ensure host defense
from environmental challenges while not harming the host. We
classify these new PIDs according to the latest IUIS classi-
fication (Table I).
COMBINED IMMUNODEFICIENCIES

T-cell receptor a gene mutation: T-cell receptor ab1

T-cell depletion
T cells comprise 2 distinct lineages that express either ab or gd

T-cell receptor (TCR) complexes that perform different tasks in
immune responses. During T-cell maturation, the precise order
and efficacy of TCR gene rearrangements determine the fate of
the cells.7 Productiveb-chain gene rearrangement produces a pre-
TCR on the cell surface in association with pre-Ta invariant
peptide (b-selection). Pre-TCR signals promotea-chain recombi-
nation and transition to a double-positive stage (CD41CD81).8

This is the prerequisite for central tolerance achieved through pos-
itive and negative selection of thymocytes. Additional insight into
the development ofTCRab1Tcellswas provided by the character-
ization of 2 patients from2unrelated Pakistani familieswho had the
same homozygous mutation in the TCRa constant (TRAC) gene
and shared increased susceptibility to infections, autoimmunity,
and profound T-cell proliferative impairments but apparently had
normal antibody responses.9 One of the cases showed predisposi-
tion to herpes virus infections (including protracted varicella zoster
and chronic EBV/HHV6 viremia) and chronic lung disease. In ad-
dition to immunodeficiency, both children had evidence of immune
dysregulation with a combination of eosinophilia, vitiligo, alopecia
areata, autoimmune hemolytic anemia, eczema, and the presence of
autoantibodies. T cells from affected subjects were devoid of sur-
face expression of the TCRab complex; all existing CD31 T cells
expressed TCRgd. Both patients were successfully treated with
matched sibling bone marrow transplants. This study is of interest
because it is the first pure TCRab1 T-cell immunodeficiency, al-
lowing a fine definition of the role of this major cell lineage. Previ-
ously described disorders affected all T-cell lineages alone or in
combinationwithB-cell or natural killer (NK) cell deficits. This ex-
periment confirms thatgdTcells alone cannot ensure adequate host
defense. It would be interesting to identify patients with a selective
gd T-cell deficiency because the exact role of these T cells remains
unknown.
Ras homolog gene family member H deficiency:

Loss of naive T cells and persistent human

papilloma virus infections
Human papilloma viruses (HPVs) are double-stranded DNA

viruses with a tropism for keratinocytes, causing chronic epi-
thelial lesions that can progress to cancer.10 Susceptibility to
HPV infection can be genetically determined, as seen in epider-
modysplasia verruciformis (EV). EV is characterized by early
development of widespread, refractory flat warts and pityriasis-
like lesions and occasional development of skin carcinomas
caused by certain types of HPV, called EV-HPV (or b-HPV
types), in otherwise healthy subjects.11 Mutations in EVER1 or
EVER2 have been identified in most but not all patients with
EV.12 To date, the exact mechanisms leading to persistent
EV-HPV infections in EVER-deficient patients are unknown;
there is a clear keratinocyte phenotype13 but only mild T-cell
anomalies in EVER-deficient patients.14 A recent study explored
the genetic basis of an EV-like phenotype in 2 French siblings
with persistent cutaneous EV-HPV infections and other clinical
manifestations, including bronchopulmonary disease and Burkitt
lymphoma in one of them, indicating that the phenotypic spec-
trum of the disease is not restricted to susceptibility to HPV.15

Therefore this condition is related to but distinct from EV. The
patients were homozygous for a nonsense allele of the Ras
homolog gene family member H (RHOH), which encodes an
atypical Rho GTPase (RHOH) expressed predominantly in he-
matopoietic cells. RHOH is crucial for pre-TCR and TCR signal-
ing and has a role during b-selection and positive selection in the
thymus.16,17 The patients displayed a lack of circulating naive
T cells, a lower than normal proportion of skin-homing b71

T cells, and impaired TCR signaling. The combination of these
T-cell defects might explain the pathogenesis of susceptibility
to cutaneous EV-HPVs. EV-like features were also recently
reported in a child with mammalian Ste20-like kinase (MST)
1 deficiency (described below).18
MST1 deficiency: Loss of naive T cells
New insight into the role of MST1 as a critical regulator of

T-cell homing and function was provided by the characterization
of 8 patients from 4 unrelated families who had homozygous
nonsense mutations in STK4, the gene encoding MST1.18-20

MST1 was originally identified as an ubiquitously expressed
kinase with structural homology to yeast Ste20.21 MST1 is the
mammalian homolog of the Drosophila Hippo protein, control-
ling cell growth, apoptosis, and tumorigenesis.22 It has both
proapoptotic and antiapoptotic functions.19 Clinically, the patients
had recurrent bacterial, viral, and candidal infections; lymphope-
nia; intermittent neutropenia; EBV-driven lymphoproliferation;
lymphoma; autoimmune cytopenias; and subtle cardiac anomalies.
Of note is the development of HPV (both EV-HPV and non-
EV-HPV) infections in 3 of the patients.18,19 MST1-deficient
patients demonstrated hypergammaglobulinemia and variable
humoral responses. However, B-cell numbers (especially memory
B-cell numbers) were significantly reduced in one report.19 Periph-
eral T cells displayed markedly impaired survival/proliferation to
mitogens and antigens, a response that worsened with time.20

Moreover, the T-cell compartment showed a restricted TCR reper-
toire and a severe reduction in circulating naive (CD45RA1) cell
numbers. Together with RHOH deficiency, MST1 deficiency
seems to affect naive T-cell development and homing, predispos-
ing to various infections in affected subjects.
Lymphocyte-specific protein tyrosine kinase

deficiency: T-cell deficiency with CD41 lymphopenia
Defects in pre-TCR– and TCR-mediated signaling lead to

aberrant T-cell development and function (Fig 1). One of the ear-
liest biochemical events occurring after engagement of the (pre)-
TCR is the activation of lymphocyte-specific protein tyrosine
kinase (LCK), a member of the SRC family of protein tyrosine
kinases.23,24 This kinase then phosphorylates immunoreceptor
tyrosine-based activation motifs of intracellular domains of
CD3 subunits. Phosphorylated immunoreceptor tyrosine-based
activation motifs recruit z-chain associated protein kinase of
70 kDa, which, after being phosphorylated by LCK, is



TABLE I. Novel PID genes and their phenotypes

Gene Protein Inheritance Phenotype

Combined immunodeficiencies

TRAC TCRa AR TCRab1 T-cell deficiency, viral infections, autoimmunity

RHOH RHOH AR Loss of naive T cells, HPV infection

STK4 MST1 AR Loss of naive T cells, EBV infection, HPV infection, autoimmunity

LCK LCK AR T-cell deficiency, CD41 lymphopenia

UNC119 UNC119 AD, dominant negative ICL

Well-defined syndromes with immunodeficiency

WIPF1 WIP AR Wiskott-Aldrich syndrome-like

PLCG2 Phospholipase Cg2 AD, dominant negative Cold urticaria, humeral deficiency, autoimmunity, atopy (S707Y)

AD, hypermorphic Autoinflammatory syndrome (deletions)

Predominantly antibody defects

PIK3R1 p85a subunit of PI3K AR Agammaglobulinemia, absent B cells

CD21 CD21 AR Hypogammaglobulinemia

LRBA LRBA AR Hypogammaglobulinemia, autoimmunity, colitis

Defects of immune dysregulation

PLDN Pallidin AR HPS type 9, albinism, immunodeficiency

CD27 CD27 AR EBV-associated lymphoproliferation, hypogammaglobulinemia

Congenital defects of phagocyte number, function, or both

ISG15 ISG15 AR MSMD

Defects in innate immunity

NKX2-5 NKX2-5 AD, dominant negative ICA

TRIF TRIF AR Herpes simplex encephalitis

TBK1 TBK1 AD, dominant negative (G159A),

haploinsufficiency (D50A)

Herpes simplex encephalitis

MCM4 MCM4 AR NK cell deficiency, infection with herpesviruses, growth retardation,

and adrenal insufficiency

Autoinflammatory disorders

ADAM17 ADAM17 AR Inflammatory skin and bowel disease, high IL-1 and IL-6 production

IL36RN IL-36Ra AR Generalized pustular psoriasis

J ALLERGY CLIN IMMUNOL

FEBRUARY 2013

316 PARVANEH ET AL
responsible for activation of critical downstream events. Major
consequences include activation of the membrane-associated
enzyme phospholipase Cg1, activation of the mitogen-activated
protein kinase, nuclear translocation of nuclear factor kB (NF-
kB), and Ca21/Mg21 mobilization. Through these pathways,
LCK controls T-cell development and activation.25 In mice lack-
ing LCK, T-cell development in the thymus is profoundly
blocked at an early double-negative stage.26 Although 3 cases
of combined immunodeficiencies with altered LCK protein
expression had been reported in human subjects, the molecular
defects at the genomic level were not documented.27-29 Recently,
autosomal recessive LCK deficiency was described as the cause
of profound T-cell immunodeficiency and immune dysregula-
tion.30 A French infant presented with early-onset protracted di-
arrhea, recurrent respiratory tract infections, failure to thrive,
autoimmune thrombocytopenia, and skin/mucosal inflammatory
disorders. Laboratory studies in the affected patient showed
CD41 T-cell lymphopenia and low Treg cell numbers. The resid-
ual T lymphocytes had an oligoclonal T-cell repertoire and ex-
hibited a severe TCR signaling defect, with only weak tyrosine
phosphorylation signals and no Ca21 mobilization after TCR
stimulation. Moreover, the patient’s T cells were resistant to
activation-induced cell death. She was found to have a homozy-
gous missense mutation of the LCK gene (c.1022T>C; L341P)
resulting from maternal uniparental disomy. Anti-TNF therapy
was partially effective in treating the serositis and skin inflamma-
tion. She underwent matched unrelated hematopoietic stem cell
transplantation at 30 months, but unfortunately, she died of post-
transplantation veno-occlusive disease. This study highlights the
importance of LCK for the development of a normal T-cell rep-
ertoire and also maintenance of central and peripheral T-cell
tolerance.
Uncoordinated 119 deficiency: Idiopathic CD41

lymphopenia
Idiopathic CD41 lymphopenia (ICL) is a very heterogeneous

clinical entity that is defined, by default, by persistent CD41

T-cell lymphopenia (<300 cells/mL or <20% of total T cells) in
the absence of HIV infection or any other known cause of immu-
nodeficiency.31 The few studies examining the pathogenesis of
ICL suggest that in some patients accelerated apoptosis and
diminished proliferative capacity are partly due to disturbed
TCR signaling.32,33 Uncoordinated 119 (UNC119), an activator
of LCK, delivers LCK to the plasma membrane through an endo-
somal route and initiates the enzymatic activity of LCK on TCR
stimulation.34,35 Through LCK, UNC119 regulates some T-cell
functions, including immunologic synapse formation, prolifera-
tion, and differentiation into effector cells.34-37 Recently, a heter-
ozygous dominant-negative missense mutation (V22G) of
UNC119 was reported in a patient with ICL.38 The patient was
a 32-year-old woman with a history of recurrent respiratory tract
infections, persistent fungal infections of the skin and nails, recur-
rent shingles, and oral herpes simplex lesions. The patient’s cells
showed reduced response to TCR stimulation, with impairment in
LCK localization/activation resulting in decreased cell prolifera-
tion. Transduction of the mutant UNC119 but not wild-type
UNC119 into normal T cells reproduced the signaling and



FIG 1. TCR signaling. Multiple signal transduction pathways are stimulated through the TCR. These

pathways collectively activate transcription factors that organize T-cell survival, proliferation, differentia-

tion, homeostasis, and migration. Mutant molecules in patients with TCR-related defects are indicated in

red. AP1, Activator protein 1; BCL10, B-cell lymphoma/leukemia 10; CARMA, CARD-containingMAGUK pro-

tein; DAG, diacylglycerol; ER, endoplasmic reticulum; FOXO, forkhead box O; GAD, GRB2-related adaptor

protein; IKK, IkB kinase; IP3, inositol trisphosphate; IP3R, inositol trisphosphate receptor; LAT, linker of ac-
tivated T cells; MALT, mucosa-associated lymphoid tissue lymphoma translocation protein; MAPK,
mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NCK, noncatalytic region of ty-

rosine kinase adaptor protein; NFAT, nuclear factor of activated T cells; PDK, phosphoinositide-dependent
kinase; PIP2, phosphatidyl inositol bisphosphate; PKB, protein kinase B; PKCu, protein kinase C u; RASGRP,
RAS guanyl nucleotide–releasing protein; SLP-76, SH2 domain–containing leukocyte protein of 76 kDa;

STIM1, stromal interaction molecule 1; ZAP70, z-chain associated protein kinase of 70 kDa.
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proliferation defects, confirming the inhibitory function of G22V
mutation. These findings shed light on the molecular mechanisms
for a subset of patients with ICL.
WELL-DEFINED SYNDROMES WITH

IMMUNODEFICIENCY

Wiskott-Aldrich syndrome protein–interacting

protein deficiency: Wiskott-Aldrich syndrome-like

phenotype
In hematopoietic cells Wiskott-Aldrich syndrome protein

(WASP) is stabilized through forming a complex with WASP-
interacting protein (WIP).39 A female Moroccan infant presented
in early infancy with recurrent infections, eczema, thrombocyto-
penia, T-cell lymphopenia, and decreased NK cell function rem-
iniscent of WAS.40 Despite normal WAS sequence and mRNA
expression levels, WASP was not detected in the patient’s cells,
suggesting WASP protein degradation caused by the absence of
WIP. Further studies showed that WIP could not be detected in
the patient’s T-cell blasts, and a homozygous nonsense mutation
(S434X) was detected in WIPF1, which encodes WIP. Despite
clinical similarities with patients with WAS, the WIP-deficient
patient displayed some immune abnormalities that have not
been documented in patients with WAS. They include impaired
T-cell response to IL-2, complete failure to proliferate in response
to TCR ligation with anti-CD3, and complete abrogation of T-cell
chemotaxis.41-43 Moreover, the mean platelet volumewas normal
in the patient, as seen in WIP-deficient mice.44 Unrelated cord
blood transplantation was performed at 4.5 months, and the child
is now doing well at age 21 months. This study is interesting
because it reports the first autosomal recessive form of WAS,
one of themost emblematic X-linked recessive PIDs and arguably
one of the first PIDs described, first byWiskott in 193745 and then
again by Aldrich in 1954.46
Phospholipase Cg2 gain-of-function mutations:

Cold urticaria, immunodeficiency, and

autoimmunity/autoinflammatory
This is a unique phenotype, sharing features of antibody

deficiency, autoinflammatory diseases, and immune dysregula-
tory disorders, making its classification difficult. Two recent
studies validated the pleiotropy of genetic alterations in the same
gene.47,48 In the first study genomic deletions in PLCG2 were
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detected in 3 distinct families with a dominantly inherited syn-
drome of cold urticaria and variable immune dysregulation.47

PLCG2 encodes phospholipase Cg2 (PLCg2), a signaling mole-
cule expressed in B cells, NK cells, mast cells, and platelets.
PLCg transmits information from activated receptors to down-
stream signal cascades by triggering receptor-mediated Ca21 en-
try.49,50 Cold urticaria occurred in all 27 affected subjects.
Interestingly, skin test results were positive for evaporative cool-
ing but negative on ice-cube and cold-water immersion. Other
variable manifestations included atopy, sinopulmonary infec-
tions, autoimmune diseases, and granulomatous rashes in order
of frequency. Laboratory findings were also variable and included
low serum IgM and IgA levels in some patients, diminished num-
bers of circulating CD191 B cells and switched memory B cells,
and low NK cell numbers, whereas IgE levels were increased in
most of the subjects. The C-terminal SH2 deletions in PLCg2,
which were seen in all 3 families, resulted in the failure of auto-
inhibition and caused constitutive phospholipase activity when
transfected into COS7 cells.47 Paradoxically, B cells and NK cells
clearly had decreased PLCg2-dependent signaling and function;
the exact mechanisms are not yet clear. Affected mast cells
showed increased mast cell degranulation at cold temperatures
without receptor stimulation, indicating that the altered function
of mutant PLCg2 was the cause of cold urticaria. Another study
by the same research group defined a hypermorphic dominant
mutation within PLCG2 (p.Ser707Tyr) as the cause of a novel
autoinflammatory syndrome in 2 affected members of a family.48

A father and his daughter both had epidermolysis bullosa–like
eruptions in infancy, interstitial pneumonitis, arthralgia, eye in-
flammation, enterocolitis, cellulitis, and recurrent sinopulmonary
infections. Immunologic workup showed low circulating IgM/
IgA levels and absence of class-switched memory B cells. The in-
flammatory manifestations were refractory to treatment with non-
steroidal anti-inflammatory drugs and TNF inhibitors but
responsive to high-dose corticosteroids and, to a lesser extent,
to IL-1 blockade. B cells showed increased PLCg2-dependent
signaling after receptor cross-linking, as indicated by increased
levels of inositol trisphosphate production, intracellular Ca21 re-
lease, and extracellular signal-regulated kinase phosphorylation.
In conclusion, a central role for PLCg in controlling Ca21 sig-

naling and thus a plethora of cellular responses could explain the
various clinical features, with the involvement of the humoral
immune system and various forms of inflammation as the common
theme.Allelic heterogeneity at thePLCG2 locus apparently further
contributes to the diversity of cellular and clinical phenotypes.
PREDOMINANTLY ANTIBODY DEFECTS

Defect in the p85a subunit of phosphoinositide

3-kinase: Agammaglobulinemia and absent B cells
Early B-cell development is under lineage-specific genetic

control. Genetic defects of Bruton tyrosine kinase and compo-
nents of the pre–B-cell receptor (BCR), such as them heavy chain,
l5, Iga, Igb, and the downstream scaffold protein B-cell linker,
have been described in more than 90% of patients with isolated
defects in B-cell development and agammaglobulinemia.51

A report has recently described a homozygous premature stop
codon in PIK3R1, which encodes 3 regulatory subunits of phos-
phoinositide 3-kinase (PI3K) by use of alternative splicing.52

The patient, a young woman with agammaglobulinemia and
absent B cells, had early onset of infections and multiple
complications, including colitis, as a teenager.52 PI3Ks are a
broadly expressed group of enzymes that respond to extracellular
signals to activate a variety of cellular functions.53 Although the
mutation did not affect the expression of p50a and p55a, the other
regulatory subunits encoded by PIK3R1, it did result in a marked
decrease in levels of p110d, the catalytic subunit of PI3K. The
developmental arrest in the patient was at the pro–B-cell stage,
earlier than that seen in patients with defects in the BCR signaling
pathway.51 The extracellular signal that requires activation of the
PI3K pathway at this early stage of development is unknown;
however, it was noted that the chemokine CXCR4 transduces
through PI3K54 and that defects in CXCR4 inmice cause a similar
block in B-cell development.55 The patient had neutropenia at the
time of diagnosis that was not seen during follow-up evaluations.
Patients with early defects of B-cell development might present
with neutropenia before they are started on gammaglobulin
replacement.56-58 Mice with p85a deficiency show a wide range
of defects, including a B-cell defect similar to that seen in mice
with mutations in Btk, hypersensitivity to insulin, defective plate-
let function, and abnormal mast cell development.59,60 In con-
trast, in human subjects the absence of p85a results in a severe
isolated defect in development of early stages of B lineage cells
without associated findings.
CD21 deficiency: Hypogammaglobulinemia
CD21, the complement receptor type 2, is expressed on mature

B cells and follicular dendritic cells.61 In addition to binding the
complement component C3d, CD21 also binds interferon a and
CD2362 and serves as the main cellular entry receptor for
EBV.63,64 CD21 forms a part of the CD19 complex, decreasing
the threshold for antigen stimulation of B cells through the
BCR.65 A 28-year-old man presented with recurrent infections,
splenomegaly, hypogammaglobulinemia, and reduced class-
switched memory (IgD2CD271) B-cell numbers but a normal
antibody response to vaccine antigens.66Compound heterozygous
mutations in theCD21 gene prohibited CD21 receptor expression.
Functional studies showed a complete loss of costimulatory activ-
ity of C3d in enhancing B-cell receptor stimulation. Vaccination
response to pneumococcal polysaccharide vaccination was mod-
erately impaired, but the responses to protein antigens were
preserved. The patient’s B cells were unable to bind to the
EBVgp350 antigen; however, the patient underwent EBV sero-
conversion in vivo, and his B cells were easily immortalized by
EBV in vitro. This indicates that CD21 is not required for EBV
infection in vitro and in vivo. The patient’s clinical condition im-
proved on prophylactic antibiotics and intermittent gammaglobu-
lin substitution. CD21 deficiency sharesmany features with CD19
and CD81 deficiency, although with less clinical severity.67,68

Preservation of specific antibody responses and normal responses
to direct BCR stimulation in patients with CD21 deficiency prob-
ably contribute to this clinical variability.66 This case suggests that
patients with CD21 deficiency present with recurrent infections
and low serum IgG levels but uneventful EBV infection.
LPS-responsive beige-like anchor deficiency:

Hypogammaglobulinemia with autoimmunity and

early colitis
Linkage analysis and whole-exome sequencing conducted by 2

groups led to the identification of homozygous, autosomal
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recessive, LPS-responsive beige-like anchor (LRBA) gene muta-
tions in 10 patients from 5 unrelated families.69,70 The clinical
symptoms and laboratory findings in these patients were highly
variable. Most had early onset of recurrent bacterial infections,
autoimmune disease, or both. A subset had severe nonbloody
diarrhea. One of the patients also had recurrent EBV-related lym-
phoproliferative disease.69 Decreased serum IgG and IgA concen-
trations were seen in 8 of the 10 patients. CD191 B-cell counts
were variable, but switched memory B-cell counts were low in
all patients whowere tested. In addition, an increased susceptibil-
ity to apoptosis was documented in LRBA-deficient EBV immor-
talized B cells.70 T cells were phenotypically normal, with
variable proliferative responses to mitogens and anti-CD3.69

The product of the LRBA gene (LRBA) is a cytosolic protein
expressed in many tissues believed to be involved in endocytosis
of ligand-activated receptors and also control of apoptosis.71,72

The authors suggest that the autoimmune features seen in
LRBA-deficient patients were attributable to increased apoptosis
and defective inhibitory receptor signaling.69,70 LRBA deficiency
should be considered in the presence of early-onset hypogamma-
globulinemia associated with colitis, autoimmune features, or
both. The mechanism of disease remains to be deciphered.
DEFECTS OF IMMUNE DYSREGULATION

Pallidin deficiency: Hermansky-Pudlak syndrome

type 9
Hermansky-Pudlak syndrome (HPS) subtypes present with

some degree of albinism and variable bleeding diathesis.73 How-
ever, some subtypes have additional features, such as neutropenia
and defective lymphocyte-mediated cytotoxicity, as seen in HPS-
2.74 Two recent articles reported the same homozygous nonsense
(c.232C>T) PLDNmutation in 2 unrelated patients with HPS-like
phenotype.75,76 PLDN is mutated in the HPS mouse model pallid
(or HPS-9) and encodes the protein pallidin that interacts with the
early endosomal t-SNARE syntaxin-13.77,78

A 17-year-old Italian girl with partial albinism, nystagmus, and
normal neurologic development presented with recurrent cutane-
ous infections.75 She had leukopenia and thrombocytopenia at pre-
sentation. NK cell degranulation and cytolysis were shown to be
defective.75 In addition, a 9-month-old Indian boy presented at
birth with generalized hypopigmentation and respiratory distress
but no history of infections or cytopenias.76 Electron microscopy
of platelets at 9 months showed absent platelet delta granules,
which is consistent with HPS. Neither of the patients had a bleed-
ing history, and results of platelet aggregation studies were nor-
mal.76 The clinical picture of the Italian patient was reminiscent
of the accelerated phase of hemophagocytic lymphohistiocytosis,
a feature that was not substantiated in a pallid mouse model. The
milder clinical phenotype of the second casemight be attributed to
his younger age. Identification of more patients with hemophago-
cytic lymphohistiocytosis presentation could list PLDNdeficiency
as a novel cause of albinism and immunodeficiency.
CD27 deficiency: Immune dysregulation and

persistent EBV infection
In clinical practice CD27 is recognized as amarker for memory

B cells and is used to subclassify patients with a variety of B-cell
immunodeficiencies.79 After binding its natural ligand, CD70,
CD27 regulates differentiation and cellular activity in subsets of
T, B, and NK cells.80,81 Two independent reports have recently
described a similar presentation of abnormal adaptive human
immunity and persistent EBV viremia attributed to CD27 defi-
ciency.82,83 Ten patients from 4 independent families (from
Morocco, Turkey, and Lebanon) were confirmed to have homozy-
gous mutations in the gene encoding CD27. The clinical picture
varied from asymptomatic memory B-cell deficiency to persistent
symptomatic EBV viremia and malignant lymphoma. After EBV
infection, hypogammaglobulinemia developed in 3 of the affected
subjects. T cell–dependent B-cell responses were abnormal,82

whereas antipolysaccharide antibodies were detectable.83 More-
over, CD81 T-cell function was disturbed, and invariant NK
T-cell numbers were diminished. Three patients died, 2 others
underwent successful allogeneic hematopoietic stem cell trans-
plantations, and 2 received anti-CD20 therapy repeatedly. CD27
deficiency predisposes to symptomatic and potentially fatal
EBV infection and hypogammaglobulinemia, a phenotype that
is similar to that of X-linked lymphoproliferative disease.
CONGENITAL DEFECTS OF PHAGOCYTE NUMBER,

FUNCTION, OR BOTH

Interferon-stimulated gene 15 deficiency:

Mendelian susceptibility to mycobacterial diseases
Mendelian susceptibility to mycobacterial diseases (MSMD)

predisposes subjects to severe disease on infection by weakly
virulent mycobacteria, such as nontuberculous environmental
mycobacteria and BCG. Germline mutations in 6 autosomal and 2
X-linked genes involved in IFN-g–mediated immunity have been
reported to cause MSMD (Fig 2).84-86 Recently, another genetic
cause of MSMD was described in 2 kindreds.87 Three children
from 2 distinct kindreds from Iran and Turkey presented with
BCG-induced clinical disease starting in early infancy and were
found to carry homozygous interferon-stimulated gene 15
(ISG15) mutations.87 The clinical and immunologic phenotypes
of these patients resembled those of IL-12 receptor b1 defi-
ciency,88 with impaired IFN-g immunity and relatively mild
MSMD responsive to antimycobacterial therapy. In mice ISG15
is induced by IFN-a/b, which is produced in response to viral in-
fection and has been shown to play a role in antiviral defense.89,90

However, it seems that the antiviral function of ISG15 is redun-
dant in human subjects because the patients did not experience
unusual viral infections. During phagocytosis, granulocytes are
a major source of ISG15 secretion.87 Free ISG15 then potentiates
the secretion of IFN-g, mostly by NK cells.91 ISG15 is therefore
not only an IFN-a/b–inducible, intracellular, ubiquitin-like mol-
ecule involved in ISGylation but also an IFN-g–inducing secreted
cytokine. This function complements the role of the IL-12–IFN-g
circuit in the control ofmycobacterial infection. The IL-12–IFN-g
circuit involves mostly mononuclear phagocytes and T cells,
whereas the ISG15–IFN-g circuit involves mostly granulocytes
and NK cells. In granulocytes ISG15 was found to be expressed
in secretory granules. The mechanisms by which ISG15 stimu-
lates NK and T cells are not yet known.
DEFECTS IN INNATE IMMUNITY

NKX2-5 deficiency: Isolated congenital asplenia
Congenital asplenia, which can be diagnosed based on the

results of ultrasonography or the presence of Howell-Jolly bodies
in blood smears, is often associated with complex visceral defects



FIG 2. Cross-talk between monocyte/macrophage cells and T/NK lymphocytes. Genes in the IL-12/IFN-g

pathway are particularly important for protection against mycobacterial disease. IRF8 is an IFN-g–inducible

transcription factor required for the induction of various target genes, including IL-12. The NF-kB essential

modulator (NEMO)mutations in the LZ domain impair CD40-NEMO–dependent pathways. Some gp91phox

mutations specifically abolish the respiratory burst inmonocyte-derivedmacrophages. ISG15 is secreted by

neutrophils and potentiates IFN-g production by NK/T cells. Genetic defects that preclude monocyte devel-

opment (eg, GATA2) can also predispose to mycobacterial infections (not shown). Mutant molecules in

patients with unusual susceptibility to infection are indicated in red. IFNgR, IFN-g receptor; IL-12R, IL-12

receptor;MB, mycobacterium; STAT, signal transducer and activator of transcription; TYK2, tyrosine kinase 2.
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as part of heterotaxy syndromes.92,93 The causative mutations
have been identified in various genes controlling left-right lateral-
ity.94,95 In contrast, isolated congenital asplenia (ICA; ie, in the
absence of heterotaxy or cardiac anomalies) was first thought to
be rare and sporadic.96 Studies of case reports and rare national
surveys suggested probable autosomal dominant, as well as spon-
taneous, occurrences.97,98 The most frequent pathogens in
patients with ICA are encapsulated bacteria, with Streptococcus
pneumonia as the leading infectious agent.98,99 The infections
associated with ICA can be fatal in childhood but tend to improve
with age.98 Using mouse models of spleen morphogenesis to help
focus the exome sequencing data of a family with ICA led to the
discovery of a heterozygous missense mutation in NKX2-5.100

Pbx1, a prime regulator of the organogenesis of the spleen, gov-
erns spleen development through transactivation of the Nkx2-5
gene product (Nkx-2).101 Moreover, both Pbx1 and Nkx-2 control
spleen growth by repression of CDK inhibitor p15Ink4b.102 Mice
deficient for Pbx/Nkx2-5/p15 components exhibit disrupted
spleen development.100 Finding of a NKX2-5mutation as a possi-
ble cause of human ICA reinforces the central role of PBX target
genes in the development of spleen. This study also paves theway
for the investigation of ICA in other kindreds.
Toll/IL-1 receptor domain–containing adaptor

inducing IFN-b and TANK-binding kinase

1 deficiencies: Herpes simplex encephalitis
Herpes simplex virus 1 (HSV1) is an ubiquitous pathogen that

causes acute, self-limiting infection after primary exposure.
However, it can trigger debilitating and fatal herpes simplex
virus encephalitis (HSE) on rare occasions.103 Thanks to recent
studies, the Toll-like receptor 3 (TLR3)–interferon pathway
emerged as the major player in localized immunity against herpes
simplex virus in the central nervous system.104,105 A recent study
of patients with HSE explored the Toll/IL-1 receptor domain–
containing adaptor inducing IFN-b (TRIF) protein as another
component of the TLR3 antiviral pathway.106 Two patients with
HSE with TRIF deficiency were identified, one with a homozy-
gous nonsense mutation, resulting in complete recessive TRIF
deficiency, and another with a heterozygous missense mutation,
leading to partial dominant (probably by negative dominance)
TRIF deficiency. TRIF is an adaptor protein serving as the sole
adaptor to TLR3 and as an alternative adaptor through TRIF-
related adaptor molecule to TLR4.107,108 Once activated by
agonist-induced TLR3 dimerization, TRIF activates downstream
signaling events, culminating in production of IFN-a/b, IFN-l,
and proinflammatory cytokines.109,110 TRIF-deficient patients’
fibroblasts did not produce interferons after stimulation with
TLR3 agonists and showed increased susceptibility to HSV1
infections in vitro.106

Another study also brings to light new facts about genetic
susceptibility to HSE. Two different heterozygous missense
mutations in TANK-binding kinase 1 (TBK1) were identified as
causing HSE in 2 patients from Poland and France.111 TBK1
encodes TBK1, a noncanonical IkB kinase of the NF-kB signal-
ing pathway, which controls the activity of transcription factors of
the interferon regulatory factor family, mainly interferon regula-
tory factor 3.112 Through this process, TBK1 exerts its antiviral
role through regulation of the production of multiple interferons.
Both mutant TBK1 alleles were loss-of-function mutations under-
lying an autosomal dominant trait in heterozygous patients by
haploinsufficiency (D50A) or negative dominance (G159A).111

TLR3-related antiviral activities were blunted in both mutant fi-
broblasts; however, the defects were rescued by IFN-a2b. The



J ALLERGY CLIN IMMUNOL

VOLUME 131, NUMBER 2

PARVANEH ET AL 321
elucidation of TRIF and TBK1 deficiencies substantiates the
obligatory role of the TLR3 pathway in immunity against
HSV1 in the central nervous system and its redundancy for pro-
tective immunity otherwise.
Minichromosome maintenance complex

component 4 deficiency: NK cell deficiency

associated with growth retardation and adrenal

insufficiency
NK cells are cells of the innate immune system that exert

antiviral and antitumor surveillance functions in mice.113 Some
cases of selective quantitative circulating human NK cell defi-
ciencies with specific susceptibility to viral infections have
been reported.114-117 However, the mechanisms that control NK
cell development in human subjects remain unclear. Two groups
of researchers have shown that human NK cell deficiency is
caused by a homozygous mutation in the minichromosome main-
tenance complex component 4 (MCM4) gene in patients from the
Irish traveler community.118,119 In addition, patients with NK cell
deficiency displayed growth retardation, increased chromosomal
breakage, adrenal insufficiency, and, in 1 case, lymphoma. From
an infectious perspective, the patients had unusual susceptibility
to herpes viruses.118 The studied patients shared the same splice
defect, probably because of a founder effect. MCM4 is a highly
conserved DNA helicase that is required for DNA replication
and cell proliferation.120 Patients’ fibroblasts contained high
numbers of DNA breaks and showed cell-cycle abnormalities.118

MCM4 deficiency contributed to a developmental defect in tran-
sition of CD56bright to CD56dim NK cells, as evidenced by the lack
of CD56dim NK cells in the peripheral blood and the preservation
of the small CD56bright NK cell population.118,121
AUTOINFLAMMATORY DISORDERS

A disintegrin and metalloproteinase 17 deficiency:

Inflammatory skin and bowel disease
Two siblings born to consanguineous parents of Lebanese

origin came to medical attention with early-onset pustular
dermatitis, short and broken hair, paronychia, frequent cutaneous
bacterial infections, and diarrhea.122 The younger sister died at 12
years of age after parvovirus B19–induced myocarditis, and the
affected brother was found to have mild cardiomyopathy.
A loss-of-function mutation in a disintegrin and metalloprotei-
nase 17 (ADAM17) was identified as the cause of this syndrome.
ADAM17 is a major membrane-bound proteinase that cleaves
cell-surface proteins, such as cytokines (eg, TNF-a), cytokine
receptors (eg, IL-6 receptor and TNF receptor), growth factors
(eg, TGF-a), and adhesion proteins (eg, L-selectin).123 In vivo,
ADAM17 has a role in controlling inflammation and tissue regen-
eration. PBMCs obtained from the affected brother showed
impaired release of TNF-a but high levels of LPS-induced pro-
duction of IL-1b and IL-6. Lack of TNF-a was considered partly
responsible for their increased susceptibility to infection and
development of cardiomyopathy.122,124
IL-36 receptor antagonist deficiency: Generalized

pustular psoriasis
Generalized pustular psoriasis is a life-threatening, multi-

systemic inflammatory disease characterized by episodic,
widespread, diffuse erythematous pustular rash associated with
high fever, malaise, and leukocytosis.125,126 By using homozy-
gosity mapping and exome sequencing, a total of 19 patients
were found to have homozygous or compound heterozygous mu-
tations in the IL36RN gene, encoding IL-36 receptor antagonist
(IL-36Ra).127,128 IL-36Ra (also known as IL-1F5) is an antagonist
of 3 cytokines of the IL-1 family (IL-36A, IL-36B, and IL-36G)
that have NF-kB– and mitogen-activated protein kinase–activat-
ing properties.129,130 Defective expression and function of IL-
36Ra thus could direct uncontrolled inflammatory processes on
pathogen stimulation through mucosal surfaces. Generalized pus-
tular psoriasis provides one more example that highlights the cen-
tral role of IL-1 signaling in tissue inflammation,131 illuminating a
rational target for its treatment.132

CONCLUSION
The field of PIDs is advancing at full speed in 2 directions. New

genetic causes of known PIDs are being discovered (eg, CD21 and
TRIF). Moreover, new phenotypes qualify as PIDs with the
identification of a first genetic cause (eg, generalized pustular
psoriasis). Recent findings contribute fundamental knowledge
about immune systembiology and its perturbation in disease. They
are also of considerable clinical benefit for the patients and their
families.Apriority is to further translate these newdiscoveries into
improved diagnostic methods and more effective therapeutic
strategies, promoting the well-being of patients with PIDs.
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