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Integrating Autoimmune Risk Loci
with Gene-Expression Data Identifies
Specific Pathogenic Immune Cell Subsets

Xinli Hu,1,2,3,4 Hyun Kim,1,2 Eli Stahl,1,2,3 Robert Plenge,1,2,3 Mark Daly,3,5

and Soumya Raychaudhuri1,2,3,6,*

Although genome-wide association studies have implicatedmany individual loci in complex diseases, identifying the exact causal alleles

and the cell types within which they act remains greatly challenging. To ultimately understand disease mechanism, researchers

must carefully conceive functional studies in relevant pathogenic cell types to demonstrate the cellular impact of disease-associated

genetic variants. This challenge is highlighted in autoimmune diseases, such as rheumatoid arthritis, where any of a broad range of

immunological cell types might potentially be impacted by genetic variation to cause disease. To this end, we developed a statistical

approach to identify potentially pathogenic cell types in autoimmune diseases by using a gene-expression data set of 223 murine-sorted

immune cells from the Immunological Genome Consortium. We found enrichment of transitional B cell genes in systemic lupus

erythematosus (p ¼ 5.9 3 10�6) and epithelial-associated stimulated dendritic cell genes in Crohn disease (p ¼ 1.6 3 10�5). Finally,

we demonstrated enrichment of CD4þ effector memory T cell genes within rheumatoid arthritis loci (p < 10�6). To further validate

the role of CD4þ effector memory T cells within rheumatoid arthritis, we identified 436 loci that were not yet known to be associated

with the disease but that had a statistically suggestive association in a recent genome-wide association study (GWAS) meta-analysis

(pGWAS < 0.001). Even among these putative loci, we noted a significant enrichment for genes specifically expressed in CD4þ effector

memory T cells (p ¼ 1.25 3 10�4). These cell types are primary candidates for future functional studies to reveal the role of risk alleles

in autoimmunity. Our approach has application in other phenotypes, outside of autoimmunity, where many loci have been discovered

and high-quality cell-type-specific gene expression is available.
Introduction

Autoimmune diseases are complex traits with many

scores of common variants throughout the genome that

might subtly impact disease risk.1–4 But, using these loci to

elucidate mechanisms from common variants has proven

to be a challenging task, particularly because many of

them do not directly alter coding sequences but potentially

impact gene regulationmodestly in a cell-specific manner.5

If the critical immune cell subsets were known for a given

disease, then investigators could derive relevant cellular

model systems for focused functional studies to understand

pathogenicmechanisms. These studiesmight includebroad

genomics approaches, such as cell-type-specific expression

quantitative trait loci (eQTL) screens to identify alleles that

act to alter gene expression,6–8 or epigenetic screens to iden-

tify key active regulatory elements.9,10 Additionally, investi-

gators could pursue focused mechanistic studies to under-

stand the role of individual disease alleles within that tissue.

But formost autoimmune diseases the immune cell types

specifically impacted by common risk variants are not

defined. Past mechanistic studies in autoimmune model

systems have often led to confusing results that might not

easily translate to human disease. For example, separate

influential studies in rheumatoid arthritis (RA [MIM
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180300]) have implicated a wide range of pathogenic cell

types, including B and T lymphocyte subsets,11 neutro-

phils,12 mast cells,13 macrophages,14 platelets,15 and syno-

viocytes.16,17 The importance of pursuing mechanistic

studies in the appropriate cell type is highlighted by the

fact that common variants can have conflicting functions

in different closely related immune tissues. For example,

a deletion of the promoter region of IRGM (MIM 608212),

associated with Crohn disease (MIM 266600) might either

increase or decrease allelic gene expression, depending on

the tissue.18 Similarly an IL2RA (MIM147730) autoimmune

variant impacts different intermediate phenotypes even in

closely related immune cells.19

Here, we hypothesize that predisposing autoimmune

risk alleles impact a small number of pathogenic tissues

or cell types. If this is the case, then the subset of genes

with critical functions in those pathogenic cell types are

likely to be within disease loci. However, in practice, a

comprehensive and unbiased catalog of cell-type-specific

gene function is simply not available. As an alternative,

compendia of gene-expression data are available for

many tissues. These compendia can serve as objective

proxies for tissue-specific gene function. Practically, gene-

expression profiles have been used to identify cell types

of origin in malignancies.20,21 In addition, investigators
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Figure 1. Statistical Approach
(A) Normalize gene expression data.We normalized the expression profile by dividing the expression value of each gene in each tissue by
the Euclidean norm of the gene’s expression across all tissues in order to emphasize tissue-specific expression. Scores were converted to
nonparametric percentiles.
(B) For each tissue, identify the most specifically expressed gene in a locus. For each SNP, we first defined genes implicated by the SNP
based on LD. For a specific tissue, we identified the most specifically expressed gene in the locus and then scored the SNP based on that
gene’s nonparametric specific expression score after adjusting for multiple genes within the locus.
(C) With permutations, assess the significance of each tissue across loci. We first calculated a score for the tissue by taking the average of
the log adjusted-percentiles across loci from B. Then, we randomly selectedmatched SNP sets and scored them similarly. The proportion
of random SNP sets with tissue scores exceeding that of the actual set of SNPs being tested was reported as the p value of the tissue.
commonly use gene-expression profiling of presumed

pathogenic tissues to screen risk alleles and to prioritize

genes for follow-up within complex trait loci. An orthog-

onal approach is to broadly consider a large collection of

potential cell types and to then identify the single tissue

that specifically expresses genes within loci that contain

disease risk alleles. To our knowledge, no such systematic

approach has yet been devised.

We developed a statistical method that, given a collec-

tion of disease-associated SNPs and a compendium of

gene-expression profiles from a broad set of tissue types,

scores tissues for enrichment of specifically expressed

genes in linkage disequilibrium (LD) with the SNPs (see

Figure 1 and Methods for details). For such a method to

be effective, it is critical to use high-quality cell-specific

expression data with minimal contamination and include

replicates to reduce noise. To this end we use the Immuno-

logical Genome Project (ImmGen) data set assaying 223

mouse immune tissues individually double-sorted by

FACS to ensure high purity and profiled in at least tripli-

cate.22 Also, it is critical for the methodology to be robust

to key confounders. Therefore, in our method we (1) use

nonparametric-expression specificity scores to avoid con-

founding by the inherently skewed nature of expression

levels, (2) correct for number of genes per SNP to avoid

multiple-hypothesis testing biases, and (3) assess signifi-

cance of disease-associated SNP sets by using matched

SNP sets to avoid confounding by correlations in gene

size and cell-specific expression,23 correlations in expres-

sion between proximate genes, and genomic biases in

gene density and genetic variation across the genome.
Material and Methods

Summary of Statistical Method
First, after standard quality control and quantile normalization,24

we transform expression data into nonparametric ‘‘tissue-specific
The Americ
expression’’ scores for each gene (Figure 1A). In order to do this,

we first divide raw expression values by the Euclidean norm of

values for each gene across all tissue types. Then, for a given tissue,

we order genes by normalized expression values and assign each

gene a percentile. These uniformly distributed percentiles consti-

tute nonparametric tissue-specific expression scores. Genes with

low percentile scores for a tissue are highly specifically expressed

in that tissue, whereas genes with high percentile scores are either

not expressed in that tissue at all or ubiquitously expressed.

Second, for a given tissue, we assign each disease-associated SNP

a ‘‘locus p score’’ (Figure 1B). To do this, we first identify genes

that are in LD with a disease-associated SNP by using standard

methods.25,26 Then, we identify the single proximate gene most

specifically expressed within that tissue. The SNP’s locus p score

for that tissue is determined to be the tissue-specific percentile

score of that gene after correcting for multiple genes tested within

that locus. These locus p scores should be roughly uniformly

distributed under the null. Finally, we assign an overall signifi-

cance score for each tissue by taking the average of the log of

locus p scores across all disease-associated SNPs (see Figure 1C).

Although an analytical p value can be calculated, to avoid realistic

confounders that could inadvertently inflate theoretical p values,

we calculate statistical significance scores by comparing the

actual log average of locus p scores to that of random SNPs

matched for total number of genes.

Gene-Expression Datasets
For this project we used two separate data sets. The Genomics

Institute of the Novartis Research Foundation (GNF) tissue

atlas consists of expression profiles of 79 human tissues and cells

types including immune-cell typesmeasured in duplicate (BioGPS,

see Web Resources).27 The Immunological Genome Project

(ImmGen) consists of expression profiles of 223 sorted cells

from immunological tissues and blood obtained from mice.22

Each sample is sorted with at least three biological replicates.

Preprocessing and Normalizing Gene-Expression

Datasets
For each data set, after applying standard quantile normaliza-

tion,24 we averaged expression values from replicates for each
an Journal of Human Genetics 89, 496–506, October 7, 2011 497



probe set. To obtain the single most robust expression value for

genes with multiple probe sets, we selected the single probe set

within each gene transcript that had the highest minimal expres-

sion value across all tissues. The GNF data set then consisted of

measurements on 17,581 unique genes in 79 tissue types. The

ImmGen data set contained 21,968 unique Mus musculus genes.

We used HomoloGene (March 2010) tomap theM.musculus genes

to 14,623 unique human homologs.

We then transformed both data sets into nonparametric tissue-

specific expression scores for genes. First, we normalized the

expression level of each gene to reflect the specificity of expression

in each tissue type. To do so, for each gene in each tissue, we

divided the raw expression value by the Euclidean norm of values

across all tissues:

X0
i;j ¼

Xi;j

normðXi;Þ

whereXi,j is the expression value of gene i at tissue j, andX0
i,j is the

specificity score. Thus, each gene and tissue received a score

between 0 and 1, where a score of 1 means the gene is exclusively

expressed in this tissue. Ubiquitously expressed genes have low

normalized scores across tissue types.

Next, for a given tissue, we transformed these normalized scores,

X0
i,j, into nonparametric tissue-specificity percentile scores for

each gene, Pi,j, where a low percentile represents high specificity

relative to other genes for a given tissue and a high percentile

represents low specificity.

Mapping SNPs to Genes
Disease-associated SNPs are linked to proximate genes in LD

with a previously described approach.25,26 First, for each SNP, we

defined genes implicated by the SNP by defining a disease region.

To do so, we identified the furthest neighboring SNPs in LD

with the SNP in the 30 and 50 directions (r2 > 0.5, CEU [Utah

residents with Northern and Western European ancestry from

the CEPH collection] HapMap). We then extended outward in

each direction to the nearest recombination hotspot.28 This region

would include the disease-associated SNP and all SNPs in LD. All

genes that overlapped with this region were considered implicated

by the SNP. If no genes were found in the region, we extended

an additional 250 kb in each direction. If two SNPs contained

overlapping genes, they were merged as one single locus.

Testing Tissue for Enrichment
Given our list of SNPs connected to genes and our nonparametric

expression tissue-specificity percentiles, we scored the list of

disease-associated SNPs for enrichment of genes specifically ex-

pressed in each individual tissue type.

To score each tissue j, we first identified the most specifically

expressed gene near each SNP S in tissue j. We will refer to that

gene as gS,j. We applied a Bonferroni correction to adjust the

tissue-specificity percentile for testing of the multiple genes near

each SNP:

PS;j ¼ 1� �
1� PgS ;j

�nS ;

where ns is the number of genes implicated by SNP S. The PS,j
values are referred to in the main text as the locus p score. They

should be roughly uniformly distributed. For each tissue, we

scored for enrichment by summing the PS,j values of all SNPs:

Tj ¼ �
X

S˛all SNPs

log
�
PS;j

�
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Under the null, if PS,j scores were randomly distributed, then Tj

should be distributed according to the gamma distribution:

D � Gða; bÞ
where a is the shape parameter and is equal to the number of SNPs

and b is the rate parameter and is set to 1. In this case, the p value

for the tissue is calculated as:

p
�
D%Tj;D � Gð1;NSNPsÞ

�

However, analytical p values are not robust to realistic biological

factors.

Significance Scores Are Based on Random SNP Sets
To estimate the significance in a more robust and unbiased

manner, we calculated p values empirically by comparing

observed Tj values to empirical values from random sets of SNPs.

Given a set of disease-associated SNPs, we create a matched SNP

set with exactly the same number of SNPs and approximately

similar numbers of genes for each permutation. We drew random

SNPs for permutation from a pool of 45,265 independent Hapmap

SNPs that were ‘‘clumped’’ to insure minimal correlation.29 To

create a matched SNP set with approximately similar gene

numbers, for each disease-associated SNP that implicated fewer

than 11 genes we selected a random SNP that implicated exactly

the same number of genes and for SNPs that implicated more

than 10 genes, we selected a random SNP that also implicated

> 10 genes. To ensure a comparable number of genes, the total

number of genes implicated by all random SNPs must be within

10% of that implicated by disease SNPs. We then scored each of

matched SNP sets for enrichment of genes in tissue j and calcu-

lated Tj. The proportion of randomly selected matched SNP sets

whose Tj is less than the Tj for the disease-associated SNPs set

was reported as the p value.

To efficiently compute significance, we varied the number of

random SNP sets that we evaluated for a tissue from 250 to

1,024,000. We started by evaluating each tissue with 250 SNP

sets. For those tissues where at least 25 sets were observed to be

more significant than the observed SNP set, we accepted the

p value and did not evaluate for any more SNP sets. For those

tissues for which fewer than 25 sets were more significant than

the observed SNP set (ie p < 0.1), we doubled the number of

SNP sets. The number of SNP sets was doubled until at least

25 events were more significant than the observed SNP set or until

we reached 1,024,000 permutations. For p values > 2.5 3 10�5,

this ensured a variance of <20%.

Assessing the Significance of Individual SNPs
For each SNP and tissue, we calculated an ‘‘empirical locus p

value,’’ which assessed the degree to which an individual gene

within a locus is contributing to enrichment of specific gene

expression within a tissue. This value was calculated by comparing

the locus p score for the actual disease-associated SNP, based on the

most specifically expressed gene within a tissue, to that of the

matched SNP in randomly selected SNP sets during the permuta-

tion process, as described above. The empirical locus p value was

reported as the fraction of randomly selected matched SNPs with

more extreme locus p scores than the actual locus p score.

Adjusting for Expression Profiles
In order to assess enrichment across tissues after accounting for

the effect of tissues that have already been identified as significant
7, 2011



from the data set, we have devised an adjusted analysis framework.

Briefly, we used the X0 matrix of tissue specificity scores, then

removed the component of each tissue expression profile that

was correlated with the tissue that we are conditioning on.

Let the expression scores of the most significant tissue be vector

v. We subtracted the components of v from another tissue’s ex-

pression profile, u, in order to obtain a new profile, u’, which is

independent of v:

u0 ¼ u� v �
X u

j u j �
v

j v j

The new profile scores were used to recalculate tissue-specific

percentiles P, which can then be reused with the same statistical

framework as above.
Scoring Nominally Associated RA SNPs
In order to score RA SNPs not yet associated with RA, we used the

p value results from a recently published meta-analysis of six

genome-wide association study (GWAS) consisting of 5,539 auto-

antibody-positive RA cases and 20,169 controls of European

descent. We selected all SNPs that had an association p value

(pGWAS) of < 0.001. After excluding SNPs within the MHC region

(ranging from 25.8–3.4 Mb on chromosome 6 in HG 18 coordi-

nates), we grouped the resulting SNPs into independent loci. We

grouped two SNPs within the same locus if they had r2 > 0.1 in

HapMap or shared a common gene. For each locus, we selected

the single SNP with the most significant association to RA. We

excluded any of these SNPs that were in LD with a known RA-

associated risk loci (r2 < 0.1) or implicated a gene that was also

implicated by a known RA SNP. We tested these loci for enrich-

ment of specifically expressed genes in each of the individual

cell types in RA. Significance for each tissue was determined by

selecting matched SNP sets as described above. Given the large

number of SNPs, we allowed for the total gene number to be

outside the 510% criteria described above.

In order to calculate an overall association to CD4þ effector

memory T cells, we averaged all four X0 specificity score profiles of

each of the subsets of CD4þ effector memory T cells together to

calculate significance of association and empirical locus p values.
Results

Statistical Properties and Robustness

Wewanted to ensure that our statistical method was robust

to realistic biological factors (e.g., neural tissues tend to

express larger genes23) that can inadvertently inflate theo-

retical p values in certain cell types (see Figure S1, available

online). Thus, we scored 10,000 sets of 20 random SNPs,

each in LD with at least one gene, from a larger set of inde-

pendent SNPs from the HapMap project. Applying our

approach to assess gene-expression enrichment in both

the 79 tissues from the GNF and to the 223 cell types

from the ImmGen demonstrate appropriate type I error

rate (see Figures S2A and SB). We also note that error rates

are consistent across all cell types, and there is no evidence

of inflation of significance scores at any given tissue.

Furthermore, our method demonstrates little evidence of

statistical inflation in 500 sets of 20 random SNPs in either

of those two data sets (see Figures S2C and S2D).
The Americ
As a positive control, we examined common variants

from two phenotypes. First, we applied our method to

37 SNPs associated with serum low-density lipoprotein

(LDL) cholesterol from a recent large genome-wide SNP

association meta-analysis.30 We hypothesized that these

genes would be most specifically enriched in the liver

because the liver is the primary organ where LDL is regu-

lated31 and known mutations impact hepatocyte cellular

function.32,33 Inaggregate, these SNPs implicated165genes

in LD (see Table S1A). When we tested each of the 79 tissue

expression profiles from GNF for specific expression of

genes in LD with these SNPs, we did indeed observe that

only the liver showed highly specific expression of genes

in LD with cholesterol metabolism SNPs (p ¼ 2.0 3 10�4,

see Table S2 and Figure S3A). Other tissues that obtained

nominal significance at p < 0.01, fetal liver (p ¼ 0.0014)

and the adipocyte (p ¼ 0.0077), were no longer significant

after adjusting for the liver-expression profile. This suggests

that the other observed associations were the consequence

of correlated expression (seeMethods). In certain cases, loci

harbored genes that were specifically expressed within the

liver, and in these cases these genes were often compelling

candidate genes (see Table S1A). Next, we applied our

method to the 32 obesity-associated SNPs34 that in aggre-

gate implicate 91 genes (see Table S1B). When we tested

79 tissues from the GNF for specific expression of genes

within obesity loci, we observed that only the pituitary

gland obtained nominal significance at p ¼ 0.0032 (see

Table S2 and Figure S3B). Although this was not statistically

significant after accounting for 79 independent tests, we

were encouraged that it emerged as the most significant

tissue because pituitary dysfunction, from trauma or rare

familialmutations, is a knowncauseof obesity.35,36 Further-

more, the authors of recent genome-wide genetic studies

have speculated that obesity SNPs act on the hypothal-

amus-pituitary axis.34,37 Potentially, amore targetedexpres-

sion data set of the brain with carefully dissected human

tissues might have resulted in a more powerful analysis.

Although there is concern that multiple intercorrelated

gene-expression profiles might compromise power, we

found that even in extreme circumstances the power loss

is minimal. Our nonparametric approach relies on the rela-

tive order of a gene’s specific expression within a tissue,

rather than the magnitude of its specificity. The addition

of intercorrelated tissue profiles impacts the magnitude

of specific expression scores for a tissue but has a minimal

impact on the relative ordering of the genes themselves. To

assess the robustness of our method to multiple intercorre-

lated expression profiles, we repeated our analysis of LDL

SNPs after adding in 1, 10, 50, or 100, copies of the iden-

tical liver expression profile. In each case the liver showed

the exact same highly specific expression of genes in LD

with cholesterol metabolism SNPs (p ¼ 2.0 3 10�4). As

a second test we added 1, 10, 50, or 100 copies of modified

liver expression profiles, where we permuted expression

values of 50% of the genes independently; so that each

added profile was correlated with but also had substantial
an Journal of Human Genetics 89, 496–506, October 7, 2011 499



Table 1. Summary of Autoimmune Disease Association to 22 ImmGen Tissues

Immune Tissues

SLE Crohn Disease Rheumatoid Arthritis

Unconditional

Adjusting for
Transitional B
Subtypes Unconditional

Adjusting for
DC Subtypes Unconditional

Adjusting for
Subtypes of CD4þ
Effector Memory T Cells

B.T1.Sp 0.00018 – 0.060 0.12 0.0032 0.0050

B.T2.Sp 0.000013 – 0.013 0.029 0.00041 0.0015

B.T3.Sp 0.0000059 – 0.030 0.036 0.00072 0.0055

B.Fo.PC 0.000013 0.23 0.06 0.04 0.0024 0.0010

B.Fo.Sp 0.000022 0.11 0.0071 0.014 0.00032 0.0015

B.FrF.BM 0.000023 0.82 0.031 0.021 0.0025 0.0025

CD19Control 0.000013 0.70 0.011 0.026 0.00099 0.0025

T.4Mem.LN 0.024 0.18 0.018 0.012 <0.0000010 –

T.4Mem.Sp 0.080 0.27 0.000061 0.00075 <0.0000010 –

T.4Mem44h62l.LN 0.021 0.05 0.00037 0.009 <0.0000010 –

T.4Mem44h62l.Sp 0.062 0.14 0.00087 0.032 <0.0000010 –

T.4.Pa.BDC 0.0073 0.019 0.00032 0.00025 0.0000059 0.017

T.4.Sp.B16 0.0016 0.0045 0.010 0.0090 0.0000078 0.0085

T.4int8þ.Th 0.05 0.33 0.00083 0.0015 0.00017 0.18

T.4Mem.Tbet..Sp 0.61 0.75 0.020 0.043 0.00021 0.70

T.4Mem.Tbetþ.Sp 0.27 0.43 0.023 0.068 0.000012 0.46

T.4SP69þ.Th 0.08 0.23 0.0094 0.013 0.00016 0.17

T.8Mem.Tbetþ.Sp 0.27 0.58 0.041 0.10 0.00018 0.64

DC.103-11bþ.PolyIC.Lu 0.013 0.026 0.000016 - 0.0094 0.021

DC.103þ11b-.PolyIC.Lu 0.043 0.062 0.000069 - 0.13 0.090

NKT.4þ.Lv 0.16 0.29 0.00038 0.019 0.00012 0.010

NK.H-.MCMV1.Sp 0.018 0.0061 0.00014 0.0073 0.076 0.33

Here, we list all 22 out of 223 tissues from ImmGen that obtained nominally significant association (p< 0.01) in at least one of the three autoimmune phenotypes
tested. For each disease, we listed results of our analysis without any conditioning, as well as results after removing the contributions of the most significant tissues.
For each tissue, we listed an association significance p value for each phenotype.
differences from the original liver expression profile. In

each case the liver showed highly specific expression of

genes in LD with cholesterol metabolism SNPs (p ranging

from 9.8 3 10�5 to 2.9 3 10�4). In instances where the

correlative structure of the data is more complex, and

power is impacted, dimensional reduction approaches to

simplify the expression data are useful.38

Application to Autoimmune Disease

Convinced that this approach was statistically robust and

could detect potentially pathogenic cell types, we applied

it to autoimmune disease SNPs. We focused on three sepa-

rate autoimmune diseases. For systemic lupus erythemato-

sus (SLE [MIM 152700]), we identified 30 SNPs, implicating

27 independent loci with a total of 136 genes (see Table

S3A).39–43 For Crohn disease, we identified 71 SNPs, impli-

cating 69 independent loci with a total of 316 genes (see

Table S3B).3 Finally, for RA, we identified 40 SNPs, in aggre-

gate implicating 39 independent loci with a total of 132
500 The American Journal of Human Genetics 89, 496–506, October
genes (see Table S3C).44,45 Testing each of these three auto-

immune disease SNP sets against the 79 GNF tissues impli-

cated only immune tissues (in each case multiple tissues

with p < 2 3 10�5, see Table S2 and Figure S4). But given

the limited number of immunological tissues and the

high degree of correlation between them, we could not

pinpoint the causal immune-cell types. We speculated

that the ImmGen data set could more clearly demonstrate

the key immune cell types for each of the different diseases

because it was collected to represent a very broad view of

transcriptional profiles in mouse immune-cell types across

many lineages, developmental stages, and target organs. It

includes hematopoietic stem, myeloid and lymphoid cells,

and both innate and adaptive immune cells.

When we tested SLE loci for enrichment of specifically

expressed genes within the 223 expression profiles con-

tained within ImmGen data set, the single most significant

immune-cell type was transitional B cells (stage T3)

collected from the spleen (p ¼ 5.9 3 10�6, see Table 1,
7, 2011



Figure 2. Application to Autoimmune Diseases
We evaluated SNPs associated with systemic lupus erythematous, rheumatoid arthritis, and Crohn disease for cell-specific gene enrich-
ment in 223 murine immune-cell types. The Bonferroni-corrected p value is shown by a dotted line. In each case, we labeled cell types
that are significant after multiple hypothesis testing (p < 2.2 3 10�4), and we bold the single most significant cell type. (A) In lupus, B
cells, especially transitional B cells in the spleen (B.T2.Sp), showed significant enrichment of genes within disease loci. (B) In Crohn
disease, epithelial-associated stimulated CD103- dendritic cells (DC.103-11bþPoluIC.Lu) achieved the highest statistical significance.
(C) In rheumatoid arthritis, the four subsets of CD4þ effector memory T cells in both the spleen and lymph nodes (T.4Mem.LN,
T.4Mem.Sp, T.4Mem44h62l.LN, and T.4Mem44h62l.Sp) showed the most significant gene enrichment (p < 10�6).
Figure 2A, and Table S4A). Strikingly, all of the other statis-

tically significant associations were other B cell subsets,

including other closely related splenic transitional B cell

subsets (p < 2 3 10�4 ¼ 0.05/223). All of the B cell associ-

ations are obviated (see Table 1 and Table S4A), when we

repeated our analysis after adjusting for three splenic tran-

sitional B cell profiles (B.T1.Sp, B.T2.Sp, and B.T3.Sp). This

strongly suggests that other observed B cell associations are

the result of expression correlation with transitional B cells

and not representative of independent effects. The impli-

cation of transitional B cells by associated loci is consistent

with much of the known pathobiology of SLE, which has

implicated B cells more broadly. The pathogenic nature

of antibodies produced by B cells in lupus has been long

established and is supported by mouse models46 and by

the demonstration of the efficacious nature of B cell tar-

geted therapies in SLE.47 These results implicating transi-

tional B cells specifically offer a finer resolution on this

commonly accepted hypothesis.

Some of the most significant loci might harbor compel-

ling candidate genes (see Table S3A). For example, the

rs13385731 locus (empirical locus p ¼ 0.0017 for stage

T3 transitional B cells) harbors the RAS pathway gene,

RASGRP3 (MIM 609531), which has been shown to poten-

tially play a role in downstream signaling from the B cell
The Americ
receptor.48 In other cases, we are able to identify specifi-

cally expressed genes that are not yet well characterized

but might warrant further examination. For example, the

rs6445975 SNP locus (empirical locus p ¼ 1.6 3 10�5)

contains PXK (MIM 611450), encoding a transcription

factor whose role in immunology is not yet well character-

ized but is highly and specifically expressed in transitional

B cells.

When we tested Crohn loci for enrichment of specifi-

cally expressed genes within the 223 cell types of the Imm-

Gen data set, the single most significant cell type was an

epithelial-associated stimulated dendritic cell subset (lung

CD11bþ dendritic cells stimulated by polyinosinic:polycy-

tydylic acid, p ¼ 1.6 3 10�5, see Table 1, Figure 2B, and

Table S4A). In Crohn disease, other cell types, including a

single CD4þ memory T cell subset and natural killer cell

subset demonstrate statistical significance after multiple

hypothesis testing. Moreover, these effects are indepen-

dent of the DC effect because their signals are maintained

after adjusting for dendritic cell contributions (see Table 1

and Table S4A). Individual genes within loci and their rela-

tive significance are listed in Table S3B. Dendritic cells in

the intestinal mucosa play a key role in mediating the

intestinal inflammation associated with Crohn disease

and have long been thought of as key mediators of disease
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activity.49,50 For example, NOD2 (MIM 605956) Crohn

disease risk variants have been shown to disrupt auto-

phagy in dendritic cells.51 The potential role of dendritic

cells has been further highlighted in a mouse model where

defective transforming growth factor (TGF)-beta activation

can result in spontaneous colitis.52

When we tested RA loci for enrichment of specifically

expressed genes within the 223 cell types of the ImmGen

data set, we observed that each of the four subsets of

CD4þ effector memory cells emerge as the most highly

significant subset (p < 10�6 for all four subsets of CD4þ
effector memory cells; see Table 1, Figure 2C, and Tables

S2 and S4A). Strikingly, most of the other cell types

achieving statistically significant association (but at a

more modest level) are closely related CD4þ T cell subsets.

Adjusting for the four profiles of CD4þ effector memory

T cells obviates the significance of all of these cell types

(see Table 1 and Table S4A), strongly suggesting that the

associations found in these other T cell subsets are due to

their high correlation in expression with CD4þ effector

memory T cells.

Certain SNPs containing highly specifically expressed

genes in CD4þ effector memory cells were particularly

significant. In many cases these SNPs pointed to well-

described candidate genes known to play key roles broadly

in CD4þ T cell biology (see Table S3C). As examples, we

note multiple genes that are specifically expressed in

CD4þ effector memory cells: PTPN22 ([MIM 600716],

rs2476601, empirical locus p ¼ 0.056 for CD4þ memory

T cells), CD2 ([MIM 186990], rs11586238, p ¼ 0.040),

PTPRC ([MIM 151460], rs10919563, p ¼ 0.043), CD28

([MIM 186760], rs1980422, p ¼ 0.0045), IL2RA

(rs2104286, p ¼ 0.0010), and CTLA4 ([MIM 123890],

rs3087243, p ¼ 0.0010). The rs2104286 SNP has already

been shown to correlate with surface expression of the

protein product of IL2RA in CD4þ memory T cells19 and

likely has CD4þ effector memory Tcell function. However,

in at least one instance, we identified a candidate gene

that has not been specifically connected to T cell function.

For example, the ANKRD55 (rs6859219, p ¼ 0.017) has

currently unknown biological function with respect to

the immune system but is highly and specifically expressed

in CD4þ effector memory cells.

To assess whether results were influenced by loci that

overlap multiple diseases, we repeated our analyses for all

three diseases excluding those loci that are implicated in

more than one disease. This decreased the number of loci

per disease substantially; the number of loci was reduced

in SLE to 11 (from 27), in Crohn to 56 (from 69), and in

RA to 23 (from 39). However, the pattern of tissue specific

enrichment was not altered (see Table S4B).

Validating Enrichment of CD4þ Effector

Memory T Cell Genes among RA Loci

In order to independently validate the role of CD4þ
effector memory T cells in RA, we examined a second set

of loci that were nominally associated to RA but not yet
502 The American Journal of Human Genetics 89, 496–506, October
considered validated risk loci. Using a polygenic modeling

approach, we have separately demonstrated that SNPs with

nominal significance at a threshold of pGWAS< 0.001 in the

latest RA GWAS meta-analysis are significantly associated

with RA risk in aggregate in independent validation

samples (E.S., S.R., R.P., unpublished data). We estimated

that 5%–15% of the SNPs that define this polygenic signal

represented true RA risk alleles (see Stahl et al. Table S2

for estimates), whereas the majority (>85%) of them repre-

sented statistical fluctuation. We hypothesized that if

these SNPs were indeed enriched for true RA risk loci and

if our result that CD4þ effector memory T cells are impor-

tant for RA holds true, then the nominally associated SNPs

should also be modestly enriched for genes specifically

expressed in CD4þ effector memory T cells.

To test this hypothesis, we obtained the latest results of

an RA GWAS meta-analysis and identified all SNPs with

pGWAS < 0.001. To ensure independence, we combined

SNPs in LD (r2 > 0.1) into individual loci and for each

locus, we picked the single most significant SNP. To ensure

that our results were independent of previously known RA

loci, we removed all loci in LD with (r2 > 0.1) or sharing

implicated genes with a known RA risk locus (see Table

S3C). In the aggregate, we obtained a total of 436 loci

implicating 1037 genes (see Table S5).

Themost significant cell type was a subcutaneous lymph

nodes CD4þ effector memory Tcell subset (p¼ 8.23 10�5,

T.4Mem44h62l.LN CD4þ; see Figure 3A). This was the

only cell type that obtained significance after correcting

for multiple hypothesis testing. Indeed, each of the subsets

of CD4þ effector memory T cells demonstrated at least

nominally significant association at p < 0.008.

To identify the contribution of the individual loci

toward the effector memory T cell enrichment, we aver-

aged the specificity profiles of all four primary subsets of

CD4þ effector memory cells together and again tested

the aggregate effector memory T cell profile for association

among these nominally associated loci. We again observed

an association (p ¼ 1.3 3 10�4). Looking at the individual

loci and genes, we note that there are 68 loci that show

specificity for populations of CD4þ effector memory

Tcells at a p< 0.1 level, whereas by chance alone we would

expect only 43.6 (see Figure 3B). Based on these results, we

might expect that as many as 25 true RA risk loci are

embedded within this set. Of the loci tested, we list those

with the most significant specific expression in CD4þ
effector memory T cells (Table 2 and Table S5). We predict

that subsequent ongoing genetic association studies for RA

will eventually clarify which of these are true RA loci.

We assessed the degree of enrichment at more liberal

GWAS significance thresholds. In order to do this, we

grouped SNPs into 50 pGWAS bins, each of size 0.001,

ranging from 0 to 0.05. Then for each group, we quantified

the degree to which genes implicated by those SNPs

were enriched for specific expression of CD4þ effector

memory cells. We observed at least nominally significant

enrichment for bins up to pGWAS < 0.005 with very little
7, 2011



Figure 3. Validating Enrichment of Cell-Specific Expression
in RA Loci
We evaluated 436 putative loci containing SNPs nominally associ-
ated to rheumatoid arthritis (pGWAS < 0.001) for cell-specific
gene enrichment in 223 murine immune cell types. The Bonfer-
roni-corrected p value is shown by a dotted line. (A) We labeled
cell types that are significant after multiple hypothesis testing
(p< 2.23 10�4). Only one of the four CD4þ effectormemory cells
(T.4Mem44h62l.LN) is significant. (B) We aggregated the expres-
sion specificity scores for the four different types of CD4þ effector
memory T cells and calculated empirical locus p values for each of
the 436 loci. These p values assessed the degree of specificity that
the most highly specific CD4þ effector memory T cell genes in
each locus achieved. In red, we plotted the histogram of these
empirical locus p values, whereas in gray, we plotted the expected
histogram of empirical locus p values. We plotted the ratio of
those two values at each significance interval. We noted modest

The Americ
evidence of any enrichment at pGWAS > 0.02 (see

Figure 3C).
Discussion

In the present study, we looked at gene expression data

alone to ascertain the key cell types impacted by autoim-

mune loci. Previously, the potential value of using gene

expression data, and other external information sources,

in integrative analysis to understand relationships be-

tween disease-associated genes and to identify candidate

genes for follow-up study has been demonstrated. For

example, we have separately integrated protein-protein

interaction data with expression data to identify specific

pathways in disease.26 As another example, Prioritizer

uses a large compendium of gene expression data along

with a multitude of other data sources to identify likely

candidate genes within loci.53 Chen et al.54 used a large-

scale gene expression compendium to look for genes that

vary most dramatically across Gene Expression Omnibus

and to identify potential candidate genes.

Our approach is contingent on the quality and avail-

ability of a high-quality gene-expression database. A com-

prehensive data set containing all of the necessary human

tissue types would be most ideal. Although the GNF data

set is reasonably comprehensive, important immune cell

types are not always present. On the other hand, ImmGen

offers the highest quality and most comprehensive immu-

nological data set that we are aware of. It does lack certain

important derived cell types of potential interest. For

example, derived helper T cell subgroups such as Th1,

Th2, and Th17 cells are not individually profiled. One

additional limitation of ImmGen is that it is based on

mouse, and not human, tissues. Although the immune

systems of the mouse and human are very similar in

lineage and structure, there are also important differences.

But the breadth of data collected for ImmGen would be

impractical to obtain in human.

For each of the autoimmune diseases, we are able to

identify very specific subsets of immune cells that could

play a critical role in disease and that go well beyond broad

immunological categories. For example, for RA we are able

to not only establish that CD4þ T cells express genes

within RA loci, but we are able to go beyond that and

specifically implicate the very specific effector memory

subset. All four of the subsets of CD4þ effector memory

T cells achieve the greatest significance in this data set
deflation at higher values (p > 0.5) and inflation at lower p values
(p< 0.1). (C)We grouped loci by their association statistics (pGWAS)
into 50 bins ranging from pGWAS < 0.001 (as in pane A and B) to
0.049 pGWAS < 0.05. Then, using aggregated specificity scores for
types of CD4þ effector memory T cells, we evaluated these groups
to see if they were enriched for specifically expressed genes. For
each bin we plot the observed to expected ratio of loci with lower
empirical locus p values (p < 0.1, blue, right axis), and the statis-
tical significance of enrichment (red, left axis).
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Table 2. Nominally Associated RA Alleles near Genes Specifically Expressed in CD4þ Effector Memory Cells

SNP CHR HG 18 Pos
Empirical Locus p (CD4þ
Effector Memory T Cell)

Most Specifically Expressed
Gene (Entrez ID, MIM)

Best Assoc RA p Value
from GWAS

rs6683027 chr1 204663522 0.0011 CTSE (1510, 116890) 4.26 3 10�4

rs11867591 chr17 62021413 0.0032 PRKCA (5578, 176960) 5.06 3 10�4

rs2023628 chr8 17091505 0.0043 ZDHHC2 (51201, N/A) 1.32 3 10�4

rs10937694 chr4 5979650 0.0054 CRMP1 (1400, 602462) 7.64 3 10�4

rs7155603 chr14 75030289 0.0084 BATF (10538, 612476) 1.53 3 10�5

rs17215817 chr8 131488842 0.0094 DDEF1 (50807, 605953) 8.22 3 10�5

rs16898297 chr8 101453401 0.0096 RNF19A (25897, 607119) 7.58 3 10�4

rs7046901 chr9 20236894 0.0097 MLLT3 (4300, 159558) 6.43 3 10�4

rs10468137 chr15 86012950 0.011 NTRK3 (4916, 191316) 7.32 3 10�4

rs735684 chr5 141465117 0.013 NDFIP1 (80762, 612050) 9.71 3 10�5

rs6021275 chr20 49588531 0.013 NFATC2 (4773, 600490) 6.30 3 10�4

rs7579944 chr2 30298530 0.014 LBH (81606, 611763) 1.08 3 10�4

rs9907505 chr17 73250509 0.017 SEPT9 (10801, 604061) 1.94 3 10�5

rs2939931 chr10 121626396 0.018 INPP5F (22876, 609389) 9.94 3 10�4

rs9366347 chr6 20474041 0.019 MBOAT1 (154141, 611732) 6.16 3 10�4

rs1422673 chr5 150419181 0.020 TNIP1 (10318, 607714) 9.51 3 10�5

Here, we listed nominally associated SNPs and their p values from RA GWAS (p < 0.001, first and last columns, respectively), their genomic coordinates (second
and third column), a significance score suggesting enrichment for a single proximate gene for specific CD4þ effector memory T cells (fourth column), and the
candidate gene with the most specific expression in CD4þ effector memory T cells (fifth column).
and adjusting for their effects obviates the other less signif-

icant observations. In this case, we validate our results by

looking at independent SNP sets with more nominal

disease association.

Intriguingly, we note for the autoimmune diseases that

although a single cell type is most strongly associated,

there is often evidence that more than one immune-cell

type is involved. For example, for RA, there is a nominally

significant cell type association for B cell subsets led by

follicular B cells (B.Fo.Sp, p¼ 0.00032), stage 2 transitional

B cells (B.T2.Sp, p¼ 0.00041), and nine other B cell subsets

obtained p < 0.01. The loci driving the B cell subset associ-

ation are distinct from those driving the association of

CD4þ effector memory cells (see Figure S5). Thus, adjust-

ing for CD4þ effector memory T cell profiles does not

completely remove the B cell association signal. Similarly,

for Crohn disease, after adjusting for the main effects of

dendritic cells, there are remaining nominal signals in

NK and CD4þ T cell subsets. Although these associations

are not significant after accounting for the multiple

hypotheses tested, they might suggest possible separate

roles of other cell types in disease that might become

more apparent as additional SNP discoveries accumulate.

Because risk alleles across autoimmune diseases are known

to overlap, diseases might be best understood by consid-

ering individual immune-cell types. Although the distribu-

tion of immune-cell types that are critical to particular

diseases might vary, overlapping loci between different

diseases might be explained by overlapping pathogenic
504 The American Journal of Human Genetics 89, 496–506, October
cell types that might play a common role in the different

diseases.
Supplemental Data

Supplemental Data include five figures and can be found with this

article online at http://www.cell.com/AJHG/.
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