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Abstract

Lymphoblastoid cell lines (LCLs), originally collected as renewable sources of DNA, are now being used as a model system to
study genotype–phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs
and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the
International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute
to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant
day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic
state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance
for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-
individual variance—i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels) than to detectable
eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and
correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug
response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro
artifacts may reduce power and have the potential to create spurious association due to confounding.
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Introduction

Genetic mapping offers an unbiased approach to discover genes

and pathways influencing disease traits and responses to drugs and

environmental exposures [1]. Unlike model organisms that can be

exhaustively phenotyped and readily exposed to drugs and toxins

in the laboratory, there are substantial limits to the phenotypes

that can be safely elicited or measured in human subjects. Thus,

there would be great value in a human in vitro model that

faithfully reflects both in vivo genetics and physiology while

allowing for systematic perturbation and characterization in high

throughput. Such a model would be particularly useful to study the

function of sequence variants mapped by whole genome

association studies of common human diseases that do not fall in

obvious coding sequences [2–6], many of which are presumed to

influence disease traits through subtle effects on gene regulation.

One such model system has been proposed and extensively

studied: EBV-transformed lymphoblastoid cell lines (LCLs)

derived from human B-lymphocytes [7–13]. Lymphoblastoid cell

lines have long been produced as renewable sources of DNA as

part of normal and diseased cohorts. Initially, LCLs derived from

genotyped CEPH pedigrees [14] and HapMap participants [15]

were used to identify genomic regions linked to and associated

with inter-individual variation in mRNA transcript levels (these

PLoS Genetics | www.plosgenetics.org 1 November 2008 | Volume 4 | Issue 11 | e1000287



‘‘expression’’ QTLs are referred in the text below as ‘‘eQTLs’’)

[16–19]. A small number of such eQTLs have been found to also

be associated with human disease [20–22]. LCLs have also been

used to search for genetic variants that predict for response to

radiation and drugs in vitro [23–26]. Some investigators have

performed joint analysis of eQTLs and drug response QTLs,

seeking non-random relationships between genotypes at single

nucleotide polymorphisms (SNPs), baseline mRNA levels, and

response to chemotherapeutic agents [27,28]. One recent study

reported identification of eQTLs that explain up to 45% of the

variation seen between individuals in cell sensitivity to chemo-

therapy [28].

The utility of genetic mapping in LCLs is a function both of

how well LCLs reflect the in vivo biology of the people from whom

they were collected, and the ability to eliminate potential sources

of confounding that could reduce power and cause spurious

associations between cell lines (and the DNA variants they carry)

and traits. While the DNA sequence of an LCL is typically a stable

representation of the human donor [29], relatively less is known

about the stability of cellular traits studied in vitro, and how they

are influenced by non-genetic factors. Certainly, there are many

opportunities for non-genetic factors to be introduced in the path

from the human donor to the study of an LCL in vitro (Figure 1):

the random choice of which subpopulation of B-cells are selected

in the process of immortalization, the amount of and individual

response to the EBV virus, the history of passage in cell culture

and culture conditions, the laboratory protocols and reagents with

which assays are performed, and the measurements used to assess

drug response and mRNA phenotypes.

Encouraged by previous studies and the emerging HapMap

resource, we set out to use LCLs to map genetic contributors to

drug response in LCLs. In the course of this work we examined the

relative contributions of DNA sequence variation, biological (day-

to-day) variability, and confounders such as growth rate, levels of

the EBV virus, ATP levels, and cell surface markers [30]. We

investigated these factors in relation to two classes of phenotypes –

drug response and mRNA expression levels. We find that inter-

individual rank order based on both drug responses and mRNA

expression levels is only modestly reproducible across independent

experiments. Measurable confounders (in vitro growth rate, EBV

copy number, and cellular ATP content) correlate more strongly

and to a larger fraction of traits than do DNA variants. Even after

correcting for confounders, and after integrating both eQTLs and

mRNA correlations to drug response into a single model, we were

unable to find convincing evidence for QTLs associated with drug

response. Our observations suggest that, in addition to larger

sample sizes, careful attention to influences of potential confound-

ers will be valuable in the attempt to perform genetic mapping of

drug responses in LCLs in vitro.

Results

Data Collected
We studied 269 cell lines densely genotyped by the International

HapMap Project [31]. Cell lines were cultured under a structured

protocol and characterized at baseline for a variety of cellular

phenotypes including growth rate, ATP levels, mitochondrial

DNA copy number, EBV copy number, and measures of B-cell

relevant cell surface receptors and cytokine levels. Each cell line

was exposed in 384-well plates to a range of doses for each of seven

drugs selected based on their divergent mechanisms of action and

importance in clinical use for treatment of B-cell diseases, focusing

on anti-cancer agents: 5-fluorouracil (5FU), methotrexate (MTX),

simvastatin, SAHA, 6-mercaptopurine (6MP), rapamycin, and

bortezomib. Drug response was measured using Celltiter Glo, an

ATP-activated intracellular luminescent marker that, when

compared to mock-treated control wells, can represent relative

levels of cellular viability and metabolic activity. Data can be

downloaded from the Broad Institute web site: http://www.broad.

mit.edu/mpg/pubs/hapmap_cell_lines/.

Total RNA was collected at baseline and mRNA transcript

levels (hereafter referred to as ‘‘RNA’’) were measured genome-

wide on the Affymetrix platform. Expression data is available on

GEO Accession # GSE11582. For QC and normalization details,

see Materials and Methods.

Baseline characterization and plating for drug response

experiments was performed in batches of 90 cell lines from each

HapMap analysis panel (CEU, JPT/CHB, and YRI) on each of

three experiment days. The order of cell lines within each panel

was randomized to avoid inducing artificial intra-familial corre-

lation. Each drug was tested at a range of doses around the

expected IC50 as reported for the drug by the NCI DTP; each

dose of drug was tested in two wells per plate and on two separate

plates. These replicate measurements for each cell line allowed

assessment of intra-experimental variation.

To evaluate day-to-day (i.e. inter-experimental) variation in all

traits, a subset of 90 cell lines (30 from each of the three HapMap

panels) was grown from freshly thawed aliquots and the entire

experiment was repeated. To evaluate the effect of technical error

on measured RNA levels, a set of 22 RNAs previously expression

profiled (using Illumina HumanChip) at Wellcome Trust Sanger

Institute (WTSI) was included in expression profiling at the Broad

on Affymetrix arrays.

Cell Line Sensitivity to Chemotherapeutic Drugs
Gene mapping of drug response (or any cellular phenotype) in

LCLs requires that the phenotype be: (1) technically well

measured, (2) biologically reproducible across independent

experiments, and (3) remain relatively free from confounding

factors. We assessed each of these characteristics in turn before

performing genome-wide association scans.

To evaluate variability in drug response across replicate plates

assayed on a given experiment day (technical reproducibility), we

calculated the ‘‘relative’’ response of a cell line to each drug by

Author Summary

The use of lymphoblastoid cell lines (LCLs) has evolved
from a renewable source of DNA to an in vitro model
system to study the genetics of gene expression, drug
response, and other traits in a controlled laboratory
setting. While convincing relationships between SNPs
and mRNA levels (eQTLs) have been described, the degree
to which non-genetic variables also influence phenotypes
in LCLs is less well characterized. In the course of
attempting to map genes for drug responses in vitro, we
evaluated the reproducibility of in vitro traits across
replicates, the impact of the EBV virus used to transform
B cells into cell lines, and the effect of in vitro culture
conditions. We found that responses to at least some
drugs and levels of many mRNAs can be technically well
measured, but vary both across experiments and with non-
genetic confounders such as growth rates, EBV levels, and
ATP levels. The influence of such non-genetic factors can
both decrease power to detect true relationships between
DNA variation and traits and create the potential for non-
genetic confounding and spurious associations between
DNA variants and traits.

Genetic Analysis of In Vitro Traits
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measuring the (signed) distance of that cell line’s dose-response

curve for the drug on a given plate to the dose-response curve for

the drug averaged across all cell lines assayed that day, in that

replicate plate set. (The two replicate plates for each cell line

performed on an experiment day were arbitrarily placed into set A

or B.) This non-parametric approach allowed all drugs to be

treated uniformly (see Methods) and generated two data points per

cell line, per drug, per day. We ranked the cell lines based on their

relative response in plate set A and separately based on values

from plate set B. The rank-correlation (Spearman’s rho) for

relative response across sets A and B was high (rho = 0.86 to

rho = 0.99, Table S1), indicating that drug response on a given day

is both highly reproducible and technically well measured in this

experimental design.

To evaluate variability across independent experiments on

separate days (biological reproducibility), we repeated the assay on

a subset of ,90 cell lines (30 from each of the three HapMap

analysis panels). (At this point, we noted that our assays for

rapamycin and bortezomib suffered from weak responses and

strong dependence on drug batch, respectively, and removed these

drugs from future analysis; see Methods for details). For the

remaining five drugs, cell lines were ranked based on relative

response on day 1 and again on day 2 as above, and the rank-

correlation (Spearman’s rho) was calculated. In comparison to the

high technical reproducibility on a given experimental day, inter-

cell line variability in drug response was much less reproducible

across independent experiments (rho = 0.39–0.82, Table S2).

We noted that the rank order of cell lines based on relative drug

response was strikingly similar between three drugs (5FU, 6MP,

and MTX). In fact, the rankings of cell lines based on these three

drugs were as similar to one another as to rankings based on

biological replicates of the same drug on different days (Figure 2A

and Table S3). Wondering if this observation was limited to our

dataset, we examined the publicly available data of Watters et

al.[25] (Figure 2B). We found a very similar correlation of relative

response to a distinct pair of drugs, 5FU and docetaxel, in their

experiments. (This correlation likely explains why these investiga-

tors found linkage for both drugs to the same genomic locus.) Such

a correlation in relative response to multiple drugs could, in

theory, indicate a shared genetic mechanism common to many

drugs, but it could also suggest the influence of an experimental

confounder that more strongly influences drug response than does

genetic variation.

We searched for and identified one such confounder: the

baseline growth rate of the individual cell lines was highly

correlated to the relative responses to these drugs (Figure 2C;

Table S3). Growth-rate was modestly reproducible across days

(rho = 0.37), with very limited evidence for heritability (h2 = 0.35;

pval = 0.08). (We note that our study is not well-powered to detect

h2,0.5 (Figure S1).) The dependence of drug response on growth

Figure 1. Genetic and non-genetic factors influencing lymphoblastoid cell lines as a model system to understand human
physiology.
doi:10.1371/journal.pgen.1000287.g001

Genetic Analysis of In Vitro Traits
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rate in LCLs, though not previously reported, is unsurprising: all

three agents depend upon cell division. Using a differential

equation model of drug response accounting for the kinetics of

exponential growth under exposure to drug (see Methods), we

estimated a growth rate adjusted EC50 for each cell line for each

of the three affected drugs. This approach removed the bulk of the

Figure 2. Drug response is correlated across multiple drugs, to growth rate and to baseline ATP levels of the cell line. (A) Relative
drug responses were calculated for each individual as described in Methods to obtain a single number summary of the cell line response to each drug
on each day. The black circles represent an individual cell line’s relative response to 6MP assayed on day one plotted against 6MP relative response
assayed on day two. The red circles similarly represent relative response to 6MP plotted against relative response to MTX, both assayed on day one.
The green circles represent relative response to 6MP plotted against relative response to 5FU, again both assayed on day one. Lines represent
regressions for each of the three comparisons and show that not only is relative drug response a reproducible trait, but also can be correlated across
multiple drugs. (B) Using online data made publicly available by Watters et al. [25], relative drug response to docetaxel and 5FU was calculated using
the 427 individuals with no missing data to obtain a single number for each drug, in each individual, as in (A). Response to docetaxel was plotted
against 5FU for each individual. The line represents the regression for the comparison and indicates that the effect observed in (A) is neither limited
to our experiments, nor to the particular drugs we attempted. (C) The baseline growth-rate of each individual’s cell line was estimated as described in
the Methods. This growth rate is plotted against relative response for 6MP (black), MTX (red), and 5FU (green). Lines represent regressions for the
respective comparisons and all correspond to significant correlations. (D) For each individual, baseline ATP levels were measured using Celltiter glo in
the mock-treated wells in drug response assays. EC50 response was calculated correcting for growth rate (see Methods). Relative ATP levels were
plotted against the growth-rate corrected EC50 for MTX (red), and 5FU (green). Lines represent regression for the comparisons and indicate
significant correlations.
doi:10.1371/journal.pgen.1000287.g002

Genetic Analysis of In Vitro Traits
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correlation between drug responses and between drug response

and growth rate (Table S4), though some correlation of responses

persisted. Standard EC50s were fit for Simvastatin and SAHA.

Given the residual correlation across drugs, we searched for

other non-genetic confounders. Baseline ATP concentrations

(estimated based on the average of Celltiter glo values for all

mock-treated wells, see Methods) were correlated to the growth

rate adjusted EC50s for MTX and 5FU (Figure 2D). Like growth

rate, ATP levels were reproducible across biological replicates

(rho = 0.6) without statistically significantly evidence for heritabil-

ity (h2 = 0.19, pval = 0.12). After further adjusting the growth rate

adjusted EC50s for MTX and 5FU for ATP levels using linear

regression, the correlation across drugs was nearly abrogated

(Table S5).

Having adjusted for confounding due to growth rate and ATP

levels, and largely eliminating correlations across drugs that were

attributable to in vitro rather than inherited influences, we

performed genome-wide association studies. Specifically, we

examined the relationship between the EC50s for each drug and

SNPs from HapMap Phase 2 with Minor Allele Frequency (MAF)

.10% [32]. We did not observe any associations that surpassed

genome wide significance (p-val,5e-8). The study was well

powered to detect only strong QTLs, those that explain .15%

of the variance in drug response (Figure S2). Nonetheless, the

distributions of statistical association between SNPs and EC50s did

not significantly exceed expectation under the null hypothesis. Our

lack of evidence for association between SNPs and drug responses

is consistent with prior publications [24–28], none of which

identified specific SNPs that exceeded genome wide significance.

Variability in RNA Expression
Previous studies observed baseline levels of RNA expression

correlated to response to cisplatin and etoposide [24,27,28]. A

correlation does not imply a causal contribution to drug response,

as a third factor could simultaneously affect both phenotypes.

Nonetheless, in the effort to identify a subset of genes whose

regulation may truly influences drug response, it may be valuable

to integrate information on SNP associations with RNA levels

(eQTLs) and RNA correlations to drug responses. We therefore

turned our attention to RNA measurements in LCLs.

As with drug response, genetic mapping of variants that

influence RNA expression requires that interindividual variation

in RNA levels is (a) reproducible on a given day, (b) reproducible

across experiments performed on different days, and (c) influenced

by genetic variation to a greater extent and independent of

confounding by experimental artifacts.

One common metric for evaluating reproducibility in expres-

sion data is to rank the level of expression of all genes in a given

sample, and to compare these ranks of genes (relative to one

another) to those obtained in a separate hybridization of another

aliquot of the same RNA (technical replicates) or in RNA from the

same cell line on a different day (biological replicates). When we

assessed the reproducibility of ranked RNA levels using this metric,

we observed a high correlation across biological replicates:

(Figure 3A – black curve). Moreover, we observed a similar

correlation between profiles from any pair of unrelated individuals

(Figure 3A – red curve), and across human cell lines in comparison

to those from chimpanzee (Figure 3A – blue curve). What this

reflects is the simple fact that the dynamic range in expression

levels across genes is stable across primates, and much larger in

magnitude than the inter-individual variation in the level of any

given gene.

A more relevant metric for gene mapping is the reproducibility

in rank order of different individuals based on the level of

expression of a given gene. If the level of a single RNA transcript

in one individual is reproducibly higher than the same RNA

transcript in another individual, then it may be possible to identify

genetic variants contributing to inter-individual variation of this

RNA transcript (i.e. an eQTL). In contrast, if variation in the level

of an RNA transcript across individuals is low relative to the

technical and biological noise in a single individual, then there will

be limited power to map genetic influences that alter expression of

the gene.

We examined inter-individual variation in RNA levels for each

of 3,538 genes measured to be expressed in the cell lines (using

standard criteria for expression arrays). The analysis included

LCLs from 49 unrelated individuals that were independently

thawed, cultured and profiled on two different days (Figure 3B). In

contrast to the results in Figure 3A, which showed excellent

technical reproducibility, we see that the rank-correlation of

individuals on different days (based on measured levels of

individual genes) is typically modest (rho = 0.25–0.3). That is, in

our experiment, only a fraction of the 3,538 RNA transcripts

examined in LCLs vary reproducibly between individuals relative

to technical and biological noise.

To parse the contributions of technical and biological noise, we

examined the reproducibility of rank orders of cell lines when

aliquots from the same RNA sample were profiled on two different

array platforms. Specifically, RNAs for 14 unrelated individuals

(from YRI HapMap subset) were profiled using the Illumina

system at WTSI, and these same RNA samples were profiled on

Affymetrix microarrays at Broad. To evaluate the contribution of

technical measurement error, we calculated reproducibility in the

rank order of individuals based on these technical replicates. We

observed a median rank-correlation of rho = 0.55 (Figure 3C –

gold curve), much higher than the biological reproducibility

observed when two RNA samples for the same 14 individuals were

independently prepared in a single lab and expression profiled on

the same platform (rho,0.3, Figure 3C – green curve). Thus,

biological variation in RNA expression is greater than measure-

ment error, even across different technologies.

To further minimize the impact of technical measurement

error, we henceforth restricted analysis to one thousand genes that

displayed the greatest technical reproducibility in rank ordering

individuals (rho.,0.7, median rho,0.85). Genes excluded by

this threshold include both those that are technically well

measured but invariant across individuals, and those for which

inter-individual variation is obscured by technical noise. (As the

WTSI performed four technical replicates while Broad performed

only a single technical replicate, WTSI data had lower overall

variance.) Genes excluded by this filter typically varied less across

individuals, particularly in the better-measured WTSI dataset.

(median standard deviation of 1000 best-measured genes = 0.27 vs

0.17 for the other ,2500 expressed genes; p-val,1e-15).

When analysis was limited to these one thousand genes, the

correlation across biological replicates improved but was still

modest (rho = 0.55, Figure 3D – cyan). That is, despite excellent

technical reproducibility overall (Figure 3A) even relative to inter-

individual variation (Figure 3C), the rank order of individuals

based on most genes was only partially reproducible.

We reasoned that some of the biological noise might be due to

other measured factors, as had been the case for drug response.

Using a threshold of 5% variance explained, growth rate was

correlated to levels of expression of only relatively few genes

(,5%). In contrast, ,15% of genes showed correlation to EBV

copy number (Figure 4A), some of which encode genes known to

participate in transduction pathways downstream of EBV

signaling [33,34,35]. Moreover, the level of expression of .25%

Genetic Analysis of In Vitro Traits
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of genes was correlated to ATP levels (Figure 4B). In total, over

40% of genes have at least 5% of their variation in RNA levels

correlated to one of three confounders above (Figure 4E).

The correlation of RNA levels to such factors could, in

principle, represent intrinsic characteristics of each LCL (which

could potentially be due to inherited DNA sequence variation,

acting indirectly through susceptibility to EBV infection or

inducing a metabolic state). Alternatively, growth rate, EBV

infection, and metabolic state could represent experimental

artifacts that obscures genetic contributions to gene expression

variation. Interestingly, measurements of EBV copy number, ATP

level, and growth rate at Broad correlate to levels of RNA

expression generated independently at WTSI [18,19] (Figure 4F),

albeit more weakly than for the expression profiles generated on

the same samples at the Broad. Thus, these confounders display a

component intrinsic to each cell line, as well as a substantial

component that is not a reproducible attribute of the cell line.

To examine how much of the variability in gene expression

might be demonstrably attributed to inherited DNA variation, we

searched for cis-eQTLs associated with RNA expression levels in

our experiment. Using HapMap Phase 2 SNPs with MAF.10%

that lie within a 0.15 Mb window around each gene, we

performed standard linear regression between expression values

of that gene and SNP genotypes coded 0,1,2 (representing the

number of minor alleles carried by the individual). In our dataset,

,9% of genes harbored a cis-eQTL that explained 5% or more of

the gene’s variance in expression levels (Figure 4C, reporting the

Figure 3. Biological variation in RNA expression. 49 unrelated
individuals were whole-genome RNA profiled on the Affymetrix
platform in two independent experiments at the Broad Institute.
(same-platform biological replicates) A subset of 14 (of the 49) were
also profiled independently at the WTSI on the Illumina platform (cross-
platform biological replicates) and an aliquot of that RNA (‘‘WTSI RNA’’)
was again profiled at the Broad Institute on the Affymetrix platform.
(cross-platform technical replicates) (A) Expression values of all 3538
expressed genes were ranked in each of the 14 unrelated individuals in
the two Broad Institute biological replicate experiments and ranks were
compared between: the same individuals in two separate experiments
(black); all pairs of unrelated individuals across two experiments (red); 5
chimpanzees assayed in the first experiment and all individuals assayed
in the second experiment (blue). Plot shows that overall expression
profiles in LCLs are highly similar across biological replicates, between
unrelated individuals, and even across species. (B) The 49 individuals
were ranked according to their relative levels of each gene in the first
Broad experiment. The ranking was then independently repeated for
the second Broad experiment. Ranks were compared across the two
experiments for each gene and the results plotted in (green), with the
median of the distribution in (dotted green). Plot shows that when any
given gene is examined, there is substantial variation in the relative
order of individuals between two independent experiments, despite the
relative order of genes being highly stable as shown in (A). Light black
and red lines are same as (A) for comparison. (C) On the set of 14
individuals, per-gene rank comparisons as in (B) are computed for: WTSI
RNA assayed on the Illumina platform vs. WTSI RNA assayed on the
Affymetrix platform (gold solid and dotted); WTSI RNA assayed on the
Illumina platform vs. RNA extracted at the Broad Institute during the
first experiment and assayed on the Affymetrix platform (brown solid
and dotted); the two independent Broad experiments as in (B), (green
solid and dotted). Plot shows substantial biological variation in the
relative levels of any given gene when profiling experiments are
repeated, far in excess of that might be expected from measurement
error alone. Magenta dash indicates the cut-off for the 1000 ‘‘technically
best-measured’’ genes to use in (D). (D) The analysis for the brown and
green curve in (C) is repeated only for the 1000 ‘‘best-measured’’ genes
and plotted in magenta and cyan respectively. Plot shows that even if
measurement noise is limited, a substantial portion of the variance in
gene expression represents biological noise.
doi:10.1371/journal.pgen.1000287.g003

Genetic Analysis of In Vitro Traits
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excess of genes compared to permuted datasets). Even more

eQTLs were evident in the WTSI expression data (which, due to

the use of four technical replicates, has lower technical noise):

.20% of genes were associated with a SNP that explains 5% or

more of the variance (Figure 4D).

Consistent with previous analyses [16,17,18], in both data sets

only a small fraction of genes displayed a cis eQTL that explained

a large proportion of variance in RNA levels. Moreover, the

fraction of genes that showed correlation to growth rate, EBV, and

ATP substantially exceeded the fraction associated with a cis-

eQTL of the same strength (compare figure 4E to 4C).

Inter- and Intra-Individual Variance Component Analysis
To parse the association of SNPs and other measures with

variation in gene expression, we decomposed the total variance in

expression of each gene into inter-individual and intra-individual

(experimental) variation. As expected, eQTLs contribute only to

inter-individual variation (Figure 5A), while EBV and ATP are

correlated to either inter-individual or intra-individual variation,

depending on the gene (Figure 5B and 5C).

Taken together, these observations have a number of implica-

tions: First, RNA levels for more genes are correlated to the

measured non-genetic cellular factors than are associated with

individual cis-eQTLs. Second, these non-genetic factors may

influence gene expression not only by varying across cell lines in a

reproducible manner (like SNPs), but also by varying across

experiments for the same cell line. Third, for some genes, a given

non-genetic factor is correlated to inter-individual variation (genes

arrayed along the x-axis in Figure 5), and yet for other genes that

same factor is correlated only to intra-individual variation (genes

arrayed along the y-axis). Factors correlated to inter-individual

variation could, in principle, represent processes related to the

action of a genetic variant, whereas those that only vary across

experiments represent noise with respect to genotype-phenotype

association.

Correlation of RNA Levels to Drug Response
We observed a large number of genes whose level of RNA

expression at baseline was correlated to drug response. Levels of

RNA transcripts for 20% of genes in the Broad Institute dataset

and 18% in the WTSI dataset were correlated (at a rho2.0.05) to

EC50 for at least one of the drugs assayed (after growth-rate and

ATP adjustment). EC50s for SAHA and 5FU appeared to have

the strongest relationship to RNA levels, correlating to 8.7% and

to 7.7% of genes measured at the Broad and WTSI, respectively.

Applying the variance components analysis to see how inter-

and intra- individual variation in growth-rate and ATP adjusted

EC50s are potentially influenced by RNA levels (and ‘‘assigning’’

to a given gene its strongest correlated drug), we observed that

RNA levels are predominantly correlated to inter-individual

differences in EC50s (Figure 5D). Much less of the correlation

between RNA expression and EC50s reflects intra-individual

variation. This observation supports the hypothesis that interin-

dividual variation in RNA levels due to eQTLs may contribute to

variation in drug response.

Integrating Data from eQTLs and Drug Response in LCLs
Having evaluated SNP associations with RNA levels (eQTLs),

and the correlation of RNA levels to drug response, we asked

whether the two relationships might point to eQTL SNPs

associated with drug response. First, we asked whether there was

an enrichment of genes both correlated to drug response and

associated with an eQTL. Second, for the subset of genes with

both an eQTL and correlation of RNA levels to drug response, we

asked whether the eQTL SNPs were associated with drug

response. Finally, we evaluated whether the strength of SNP

association with RNA levels (eQTL) is correlated to the strength of

SNP association with drug response. None of these analyses

strongly supported an influence of eQTL SNPs on drug response.

We first examined the fraction of genes whose expression is

associated with an eQTL and correlated to drug response. As seen

in Figure 4, ,14% and 4.5% of genes have cis-eQTLs (r2.0.08,

FDR,10%) in the WTSI and Broad Institute datasets respective-

ly. In the same data, levels of RNA of 18% (WTSI) and 20%

(Broad) of genes are correlated to drug response (rho2.0.05,

FDR,10%). When we consider the intersection of eQTL-bearing

genes and drug-response correlated genes in each dataset

independently, however, we see that only 1.4% (WTSI) and

0.9% (Broad) of genes are both correlated to drug response and

bear a cis-eQTL. Neither intersection contains more genes than

would be expected by chance alone and, at most, only a small

fraction of genes are involved.

Among the 1000 ‘‘best-measured’’ genes in each RNA dataset,

we identified a total of 23 genes that happened to contain both an

eQTL and showed correlation of RNA levels to drug response. We

asked whether these 23 eQTL SNPs showed a non-random

Figure 4. RNA expression is correlated to SNPs and cellular traits. 198 unrelated individuals were whole-genome RNA profiled on the
Affymetrix platform at the Broad Institute (‘‘Broad RNA’’) and independently on the Illumina platform at WTSI (‘‘WTSI RNA’’). The 1000 ‘‘best-
measured’’ genes identified in Figure 3 were tested for correlation to SNPs and cellular traits. (A) For each tested gene, Broad RNA expression levels
were rank-correlated to copy numbers of EBV, as determined by quantitative PCR. The correlation was expressed as rho2 and curves representing
distributions of the rho2values are plotted. The green curve is the observed distribution of EBV-RNA correlations. The red curves represent 20
permuted distributions. The blue curve is the average of permuted distributions. The black curve is the difference between observed and permuted
values and thus a lower bound (see Methods) of the fraction of genes correlated to EBV at a given rho2. Plot shows that ,15% of expressed genes
have .5% of their (rank) variance in expression explained by EBV levels. (B) For each tested gene, Broad RNA expression levels were correlated to
baseline ATP levels determined by measuring Celltiter glo in mock-treated wells in the drug response assays. Curves representing the distribution of
rho2 values were plotted for the tested genes as in (A). Plot shows that .25% of expressed genes have .5% of their variance in expression explained
by ATP levels. (C) For each tested gene, Broad RNA expression levels were correlated to all SNPs with MAF.10% within a 0.15 Mb window around the
gene, using the HapMap phase II data. Curves representing the distribution of the largest r2 value was plotted for each tested genes as in (A). Plot
shows that .9% of genes have .5% of their variance in expression explained by SNPs in the Broad RNA dataset. (D) For each tested gene, Sanger
RNA expression levels were correlated to all SNPs with MAF.10% within a 0.15 Mb window around the gene, using the HapMap phase II data. Curves
representing the distribution of the strongest r2 value was plotted for each tested genes as in (C). Plot shows that .20% of genes have .5% of their
variance in expression explained by SNPs in the WTSI RNA dataset. (E) For each tested gene, Broad RNA expression levels were correlated to EBV,
growth rate, and relative ATP, and the strongest observed correlation among the 3 phenotypes was plotted. Strikingly, plot shows that .40% of
genes have .5% of their variance in expression explained by one of these covariates. (F) For each tested gene, WTSI RNA expression levels were
correlated to EBV, growth rate, and relative ATP, and the strongest observed correlation among the 3 phenotypes was plotted. Strikingly, plot shows
that the effect of covariates in (E) is observable even when looking at a completely separate expression experiment, performed independently of
covariate collection.
doi:10.1371/journal.pgen.1000287.g004
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Figure 5. Correlation of eQTLs, EBV, and ATP to inter- and intra-individual variation in RNA expression levels, and correlation of
RNA expression levels to inter- and intra-individual variation in drug response. Total variance for each of the 1000 ‘‘best-measured’’ genes
was separated into inter- and intra- individual variance components (see Methods) using expression data from the 49 unrelated individuals measured
twice at the Broad Institute on the Affymetrix platform. (A) 95 genes with eQTLs that explained .10% of expression variance (FDR,10%) in the WTSI
dataset were selected (to maximize eQTL detection power) and the SNP genotype was included in the variance components model of the gene to
‘‘account’’ for its effect. 21 times the change in each variance component is plotted for each gene. As expected, the plot shows that that SNPs (which
remain fixed across experiments) only explain inter-individual variation in expression. Grey dashed lines indicate the inter- and intra- 2.5% and 97.5%-
tiles of the distribution of variance component change estimates when the entire analysis is repeated on a permuted dataset. (B) 125 genes
correlated to EBV at rho2..05 (FDR,10%) were selected and the EBV measurement was included in the variance components model of the gene to
‘‘account’’ for its effect. 21 times the change in each variance component is plotted for each gene. The plot shows that EBV is correlated to inter-
individual differences in gene expression that persist across experiments, intra-individual fluctuation in gene expression between experiments, or
both, depending on the gene in question. Grey dashed lines are as in (A). (C) 249 genes correlated to ATP at rho2..05 (FDR,10%) were selected and
the ATP measurement was included in the variance components model of the gene to ‘‘account’’ for its effect. 21 times the change in each variance
component is plotted for each gene. The plot shows that ATP is correlated to inter-individual differences in gene expression that persist across
experiments, intra-individual fluctuation in gene expression between experiments, or both, depending on the gene in question. Grey dashed lines are
as in (A). (D) 202 ‘‘drug-response correlated’’ genes were defined as in Figure 6. The expression of each gene was incorporated in a variance
components model of the assigned drug response EC50 to examine the correlation of the gene to its strongest correlated drug. 21 times the change
in the variance components of drug response is plotted for each gene, showing that it is mostly the inter- individual differences in gene expression
that are correlated to cell line drug response. Grey dashed lines are as in (A).
doi:10.1371/journal.pgen.1000287.g005
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distribution of association with drug response. When we first

regressed the drug EC50 against genotype for each of the 23 SNPs

above, we saw an excess of association over that expected under

the null distribution (Figure 6). Moreover, the associations of SNPs

with drug response appear to be in the direction predicted by the

pair-wise SNP-RNA and RNA-Drug response relationships

(Figure S3). A simulated dataset with the same SNP/RNA/Drug

variances and independent SNP-RNA/RNA-Drug pairwise co-

variances (i.e. the eQTLB/RNAB scenario in Figure 6A) as those

observed fails to demonstrate the excess association between SNPs

and drug-response (Figure 6B – gray lines). Though no highly

significant examples were documented, these observations are

consistent with the existence of eQTLs associated with drug

response (i.e. the eQTLA/RNAA scenario in Figure 6A).

While Figure 6B might suggest that many eQTLs are associated

with drug response, we recognized a potential bias that might

inflate this association in absence of (or in addition to) real signal:

the ‘‘winner’s curse’’ [36] overestimate of effect size incurred

during discovery of eQTLs (Figure S4). To examine this possible

source of spurious association, we replaced all simulated eQTL

effects in (Figure 6B) with an eQTL whose true effect is r2 = 0.05,

but whose observed effect in simulated datasets is r2.0.08. In this

(more realistic) simulation, we recreate an inflation of p-values

similar to that observed. (Figure 6C). This analysis suggests that

winner’s curse may contribute to the apparent excess of association

in Figure 6B.

Finally, if these eQTLs were truly influencing drug response,

one might expect that stronger eQTLs would have stronger

associations with drug response. We plotted the strength of each

eQTL against the strength of association between the eQTL SNP

and drug response. Counter to expectation, the strongest

associations between SNPs and drug response are observed for

SNPs that are weak eQTLs, while most of the stronger eQTLs

have no association with drug response (Figure 6D). We do

observe three SNPs with relatively strong drug response and RNA

levels association (Figure 6D blue arrow): rs1384804-C8orf70

(Ensembl:ENSG00000104427)-MTX, rs3733041-GLT8D1 (En-

sembl:ENSG00000016864)-5FU, and rs2279195-SH3TC1 (En-

sembl:ENSG00000125089)-Simvastatin with SNP-Drug p-values

of 0.03, 0.05, and 0.02 respectively. While these may be interesting

candidates for follow-up and replication, statistical significance is

extremely weak, and thus much larger sample sizes are required to

achieve genome-wide significance.

Discussion

Recent studies have shown that a subset of genes contain cis-

eQTLs that explain a modest fraction of inter-individual variation

in RNA levels. Other studies used LCLs to perform linkage and

association scans for drug response [26,27,28]. However, few

reports characterize the biological reproducibility of these

phenotypes, and none to our knowledge have characterized their

correlation to in vitro measures such as growth rates, EBV copy

number, and metabolic activity. We document that most traits we

studied, whether drug responses or RNA transcript levels, are only

partially reproducible across experiments, and that more genes are

correlated to cellular growth rate, ATP levels, and EBV copy

numbers than to genetic variants (at comparable fractions of

variance explained). Thus, in addition to issues of statistical power

relative to genetic size of effect (Figure S2), day to day variability in

a trait and confounding factors are major influences on gene

mapping experiments in LCLs.

Consistent with prior reports, our genome-wide association

studies of drug response did not reveal any SNPs associated with

drug response with genome-wide significance. The inability to

detect such SNPs is likely due to lack of power to detect weak

effects with limited sample size (Figure S2) and in the presence of

significant confounding and noise.

Several studies attempted to improve power to discover SNPs

associated with drug response [15,16] by integrating eQTLs and

RNA correlations to drug response [18,19]. Whether these eQTLs

are incidental or actually contributing to drug response depends on

whether the cognate RNAs influence drug response or are merely

correlated to drug response by a non-genetic factor that simulta-

neously affects both phenotypes. Our results fail to show convincing

association of eQTL SNPs with drug response (EC50s adjusted for

growth rate and ATP levels). Moreover, some apparent association

can be attributed to ‘‘winner’s curse’’ (a bias possibly avoidable in the

future with the creation of large cohorts for eQTL discovery). We do

observe three potential associations that may merit future study:

rs1384804 near C8orf70 to MTX, rs3733041 near GLT8D1 to 5FU,

and rs2279195 near SH3TC1 to Simvastatin.

The hallmark of genetic mapping is causal inference: the

interpretation that genetic variants at a particular genomic locus

are influencing a trait of interest. This interpretation requires

confidence that the association between genetic variation and

phenotype is not due to confounding, but rather represents a

causal relationship. In an experimental cross, causal inference is

supported by meiotic randomization and the shared parents of all

offspring. In a genome-wide association study, causal inference can

be supported if the genomic background of study participants is

observed to be null distributed and potential confounders are

eliminated. Our data suggest that GWAS of LCLs need to

carefully consider the major impact of non-genetic confounding in

relation to the documented effects of eQTLs. In addition to

reducing power, confounding by non-genetic factors can cause

spurious associations between cell lines and phenotypes, violating

the conditions under which causal inferences can be made.

A major limitation of our study is the relatively small sample size

of the HapMap samples for performing genome-wide association

studies. As much larger collections of LCLs (such as those proposed

to study cell lines from eight thousand and one-hundred thousand

individuals by the Framingham Heart Study [37] and the National

Children’s Study [38], respectively) are currently being collected, we

are optimistic that larger studies have potential to map pharmaco-

genetic loci in LCLs. By highlighting these aspects of the LCL

model, as well as pointing to how some of them may be addressed,

we hope to build a stronger foundation on which these important

experiments can be planned and carried out.

Materials and Methods

Cell Culture
EBV-transformed lymphoblastoid cell lines were acquired from

the NHGRI Sample Repository for Human Genetic Research in

frozen aliquots. Cells were thawed in 5 mL culture medium

(RPMI medium 1640 (Invitrogen) supplemented with 10%

FetalPlex (Gemini), 2 mM L-Glutamine (Invitrogen), and 16
penicillin/streptomycin (Invitrogen)). Cell lines were counted daily

using Z2 Coulter Counter (Beckman Coulter) and passaged as

needed to maintain a concentration of 2–561e5 cells/ml at 37 C

in a 95% humidified 5% CO2 atmosphere.

Initially, cells were grown until 561e5 cells/ml were reached in

50 mL total volume. Then, ten identical aliquots were frozen in

1 mL freezing media containing 50% FetalPlex, 40% RPMI 1640

medium, and 10% DMSO (Sigma) at 280 C for 24 hrs and

transferred to liquid nitrogen. These aliquots were used to provide

biologic replicates for the experiments described below.
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Figure 6. Effect of cis-eQTLs in drug-response correlated genes on drug-response. The 198 unrelated individuals were ranked by RNA
expression value for each of the 1000 ‘‘best-measured’’ genes. These individuals were then ranked by response (growth/ATP- corrected EC50) to each
of the 5 assayed drugs. Rank-correlations (spearman’s rho) were computed for each gene-X-drug pair (100065) and the drug with the strongest
correlation to a given gene was ‘‘assigned’’ to that gene. The 202 genes whose strongest drug correlations exceeded rho2 = .05 (FDR,10%) were
taken as ‘‘drug-response correlated’’ genes. If such a gene also had a cis-eQTL that explained at least 8% (FDR,10%) of its variance, the SNP-RNA-
Drug relationship was considered in the foregoing panels. We considered 23 SNP-RNA-Drug response relationships (14 derived using WTSI RNA
dataset+9 derived using the Broad Institute RNA dataset). (A) Diagram of different relationships between SNPs, RNA levels, and drug response.
Coding SNPs have direct (non-RNA mediated) effects on drug response by altering protein function. No SNPs of this class were found at genome-
wide significance in our GWAS scan. Changes in RNAA influences drug response. An eQTL for one of these RNAs (i.e. eQTLA) is thereby associated with
drug response.Non-genetic confounding factors simultaneously influence RNAB levels and drug response; changes in RNAB do not influence drug
response (this is the expected scenario for most RNAs). Even if levels of these RNAs are associated with eQTLs, these eQTLs are not associated with
drug response. (B) For each SNP-RNA-Drug response relationship (WTSI – red, Broad – green) the drug response was regressed against the eQTL SNP
genotype. P-values are plotted as open circles against their expectation under the null distribution. Black solid line indicates the theoretical flat
uniform distribution expected under the null and black dashed line is the p = .05 one-sided significance threshold for deviation from the null. Grey
lines show equivalent null parameters, but derived from a simulated dataset with the same SNP/RNA/Drug variances and independent SNP-RNA/
RNA-Drug pairwise covariances as the real 23 SNP-RNA-Drug response relationships. Plot shows that the observed p-value distribution for drug-
response regressed against RNA eQTL SNPs exceeds that expected by chance. (C) For each SNP-RNA-Drug response relationship, simulated datasets
were created with the same SNP/RNA/Drug variances and RNA-Drug pairwise covariance as the real 23 SNP-RNA-Drug response relationships, but
with the real SNP-RNA covariances replaced by r2 = 0.05. Then, only those simulations where the observed SNP-RNA association exceeded r2 = 0.08
were used to plot the median and p = .05 SNP-Drug p-value distributions as in (B) (again, grey solid and grey dashed lines, respectively). Black lines
also as in (B). Plot shows that ‘‘winner’s curse’’ in eQTL discovery leads to an inflation of SNP-Drug associations, in the absence of any RNA influence
on Drug response. (D) For each SNP-RNA-Drug response relationship (WTSI – red, Broad – green), the correlation between SNP and RNA is plotted
against the correlation between SNP and Drug. Most increased association between SNP and Drug response comes from the weaker eQTLs, while
most of the stronger eQTLs have no association with drug response, consistent with the winner’s curse phenomenon displayed in (C). Additionally, 3
SNP-RNA-Drug response relationships emerge that are both relatively strong SNP-RNA and SNP-Drug response associations, indicated by the light
blue arrow.
doi:10.1371/journal.pgen.1000287.g006
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Aliquots were thawed on experiment day #1 as described

above. Cell lines were counted daily and passaged as need to

maintain a concentration of 4–861e5 cells/ml in 10 mL culture

medium. On experiment day #7, cells were counted and

distributed for use in the various experiments described below.

One cc of culture was used for immediate immunophenotyping via

FACS and Luminex beads. One cc of culture was used for RNA

and DNA extraction using Trizol (Invitrogen) following the

manufacturer’s protocol. The remaining eight cc of culture were

used for drug response assays described below.

Drug Response Assay
The drugs that we studied are bortezomib (courtesy of T.

Hideshima), rapamycin (Biomol), 5-fluorouracil (Sigma), metho-

trexate (Sigma), 6-mercaptopurine (MP Biomedicals), SAHA

(Biovision), and simvastatin (Calbiochem). These drugs were

arrayed in a source plate in the concentrations according to

supplemental figure. The source plate was pinned into each cell

line in duplicate, resulting in each drug concentration being

assayed in each cell lines 4 times.

For drug response assays, LCLs for each cell line were diluted to

161e5 cells/ml, and 25 uL of cell culture were plated into each

well of two white solid flat bottom 384 well plates (Corning cat#
3704) using a microplate dispenser (Multidrop Combi, Thermo

Scientific). Next, 100 nL was pin-transferred from the source

plates into the plates containing cells using an automated 384

channel simultaneous pippettor (CyBi-Well, CyBio). Plates were

incubated at 37 C in a 95% humidified 5% CO2 incubator.

After 48 hrs, plates were removed from the incubator to room

temperature for 10 minutes prior to being vortexed for 30 sec-

onds. 25 uL of Celltiter Glo (Promega Cat No. G7573) diluted 1:3

in PBS was added to each well with the Multidrop microplate

dispenser and shaken for two minutes. Luciferase luminescence

was then immediately measured for each well using a multiplate

illuminometer (Envision, Perkin Elmer). Raw luminescence data is

available online: http://chembank.broad.harvard.edu/assays/

view-project.htm?id=1000477.

The experiment was monitored for cell-culture handling,

plating, pinning, and assay errors and failed cell lines/plates/

drug-rows were excluded from down-stream analysis. (Most cell

lines were successfully assayed on two plates for all drugs, however;

specific counts are below.) Luminescence values in drug-exposed

wells were divided by the median control-well luminescence in the

same plate row (after excluding plate edge wells) to obtain 4

viability fractions per cell line, per drug, per dose, in each

experiment. For evaluation of technical reproducibility, the

median of the 2 fractions on each plate was taken as the cell

line’s response to that dose on that plate. For evaluation of

biological reproducibility and all other analyses, the median of the

4 fractions was taken as that cell line’s response to that dose in the

experiment. Drug responses were examined, and it was noted that

the experiment failed to achieve meaningful cytotoxic response to

rapamycin, with most cell lines reaching a maximum fractional

viability of only ,0.6–0.7, even at highest concentration of drug

assayed. It was concluded that the viability assay was not a

relevant read-out for rapamycin response, and the drug was not

considered in further analyses.

Overall cell line response to a given drug was then calculated by

taking the average response to a dose across all cell lines in the

experimental batch (cell lines were assayed in batches of ,90),

subtracting the average from the value for each cell line, and then

averaging the result for each cell line across all doses. (The 4–5

low-concentration doses where all cell lines had a fractional

viability of ,1 were excluded from the calculation.) In this way,

the (single value) relative response of a given cell line to a drug was

calculated, representing the non-parametric distance of that cell

line’s dose-response curve to the average dose-response curve for

that drug in the experiment. (For the analysis of technical

reproducibility, the calculation was done using only replicate plate

A for all cell lines, and then using only replicate plate B, and the

two values were compared). Quality control then proceeded by

examining the dependence of response on the compound stock

plate from which the drugs were pinned. (Compound stock plates

were prepared with enough drug to run ,20 cell lines and drug

response should be independent of the drug stock.) Indeed, it was

noted that for 5FU, 6MP, Simvastatin, SAHA, and MTX,

dependence on drug stock was weak, while for bortezomib, the

dependence was profound, with large differences in response

between different plates, significantly in excess of the differences

between cell lines on a given plate. Thus, bortezomib was excluded

from further analysis. Though dependence on compound plate for

the other 5 drugs was weak, average response for each compound

stock plate was subtracted from each cell line using that plate (for

each drug independently) and this normalized response was

carried forward.

In summary, after the processing steps above in the main batch

of experiments, 254 cell lines were successfully assayed for

response to 6MP, 256 for MTX, 260 for Saha, 262 for Simva,

and 259 for 5FU. 84 cell lines were then again successfully

measured for all 5 drugs as biological replicates. (For ease of

comparison, technical reproducibility is also reported using only

the two plates from these biological replicate samples.) These

values are available as ‘‘relative responses’’ in the online

supplement. Analyses in Figure 2 use this data for the ,200

successfully measured unrelated individuals, after again centering

within each HapMap panel. Also, the median (non-boundary)

control well luminescence over the two plates for each cell line was

taken as the ‘‘ATP content’’ of the cell line. The value was divided

by 100,000 and centered within each HapMap panel.

Modeling Drug Response
To account for the effect of growth-rate on response to MTX,

5FU, and 6MP, we reasoned as follows: Assume a simple ODE

model of cell line population growth: dP
dt

~rP, where P(t) is the # of

cells in the population at a given time, and r is the (unobserved in

the specific drug-exposure experiment) growth rate parameter.

This ODE has the solution: P(t) = P0ert. When the cell line is

exposed to drug, its growth-rate is impaired in a concentration-

dependent manner. Taking inspiration from first-order Michaelis-

Menten kinetics, we can model this as:
dPdrug

dt
~r 1{ð

Max reduction � ConcDrug½ �
Concentration for half maximal reduction aka 00EC5000z ConcDrug½ �ÞP, which is

solved by Pdrug tð Þ~P0e
r 1{

MaxRed� ConcDrug½ �
EC50z ConcDrug½ �

� �
t
. As our observed

luminescences are ratios between drug wells and control wells at

given concentrations, we can write
Pdrug tð Þ

P tð Þ ~ P0e
r 1{

MaxRed� ConcDrug½ �
EC50z ConcDrug½ �

� �
t

P0ert ,

which can simplified as
Pdrug tð Þ

P tð Þ ~e
{r�MaxRed� ConcDrug½ �

EC50z ConcDrug½ � t
.

There are two identifiable parameters in this model: the

concentration necessary for half-maximal reduction in growth-rate

(EC50) which is independent of growth rate r itself, and r *

maximal reduction of r, a product term dependent on growth rate

whose components cannot be independently estimated. The model

was fit for each cell line, for each drug independently, using

median measurements at all doses. QC was performed by

excluding all models with RSS.0.08. The –r*MaxRed term was

discarded, and the EC50 was carried into further analysis after
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centering the values within each HapMap panel. (257 cell lines

were successfully fit for 5FU, 251 for 6MP, and 255 for MTX.)

Models were also successfully fit to all 84 biological replicates of

6MP and 5FU, and 82 replicates of MTX. ATP correction for

5FU and MTX was then carried out by taking the residuals of the

linear regression DRUG,ATP.

SAHA and Simvastatin were modeled by a standard sig-

moid[39], with response (fractional viability) at a given

dose~Max Inhibitionz 1{Max Inhibition
1zeslope� log doseð Þ{log EC50ð Þð Þ. Notably, max inhi-

bition and EC50 are not the same as above, here representing a

minimal viability and the concentration at which that minimal

viability is achieved, respectively. Maximum inhibition (aka

minimum viability) were ,0.05 for most cell lines for simvastatin

and varied between ,0.1–0.3 for SAHA. The EC50 was carried

into further analysis after centering the values within each

HapMap panel. Again, QC was performed by excluding all

models with RSS.0.08. (257 cell lines were thus successfully fit for

Saha and 261 for Simvastatin.) Models were also successfully fit to

all 84 biological replicates of Saha and 5FU, and 83 replicates of

Simvastatin. The GWAS for drug response was performed with all

successfully measured individuals, while analyses presented in

Figures 2,5,6 were performed with unrelated individuals only.

Growth Rate Measurements
Each cell line was seeded at a concentration of 261e5 cell/mL in

2 mL. LCLs were counted daily for five consecutive days with an

automated particle counter (Z2 Coulter Counter, Beckman

Coulter). A regression of the form log(conc day i) = r*i+log(conc

day 0) was fit for each cell line to obtain the estimate of growth rate r.

QC was performed by evaluating the 95% confidence interval of the

r estimate and rejecting estimates whose interval width exceeded

1.1. Thus, estimates of growth-rate for 237 cell lines were obtained.

These values were normalized within each population for all

analyses. An abbreviated second replicate of the experiment was

repeated on a subset (155) of the cell lines with only the 3rd day

counts collected to evaluate growth rate reproducibility.

FACS Analysis
From each LCL, ,25,000 cells were incubated with R-

Phycoerythrin–conjugated mouse anti-human antibody to cell

surface markers (CD19, CD20, CD21, CD40, CD58, CD80,

CD86, CD95, CD227, IgD, IgG, IgM, HLA-DQ, HLA-DR, and

IL6R) at 4uC for 30 min. Cells were washed once with PBS and 1%

fetal bovine serum and were fixed with 1% paraformaldehyde. Data

on cell-surface expression in each cell line were acquired using a

fluorescence-activated cell sorter (BD Biosciences FACSCalibur

system). To quantify expression for each LCL, we used flow

cytometry, requiring at least 500 cells per LCL for it to be included

in our analysis. Fluorescence intensity was measured for the anti-cell

surface protein antibody and a control isotype antibody for each

LCL. A marker (and, separately, a control) histogram was created

by placing individual cell measurements into 1,024 equally spaced

intensity bins. Counts in the control histogram were subtracted from

the marker histogram to obtained a ‘‘normalized’’ histogram of cell-

counts in each of the 1,024 intensity bins. The average intensity was

then calculated from this normalized histogram and the log of this

value was carried forward into QC as the average normalized

marker expression for that LCL.

QC then proceeded by regressing this marker expression on the

total cell count obtained for that marker within a given

experimental batch of LCLs. (samples were batched by HapMap

panel) We reasoned that if the experiment was successful, there

should be no dependence of cell-surface marker expression on the

quantity of viable cells obtained in the experiment; if there was

such a dependence, the marker expression was likely reading out

handling differences between LCLs, not true, intrinsic differences

in expression. Indeed, by this metric, we found that during the first

batch of experiments that was attempted (for the CEU panel), only

4 markers were successfully measured, while subsequent batches

(YRI+CHB/JPT samples) succeeded for 14 and 9 markers

respectively. In most markers that passed this filter, it was further

noted that a few cell lines showed very low expression, far from the

overall distribution of the values for each batch. While it is

conceivable that these represent true differences, we interpreted

these values as individual LCL measurement failures, and further

truncated the lowest 5% of values within each marker in each

batch. Thus, the final dataset contains measurements of: 85 cell

lines for CD19 and CD20, 169 for CD21, 166 for CD227, 248 for

CD40, 164 for CD58, 166 for CD80 and CD86, 248 for CD95, 80

for HLADQ, 85 for HLADR and IgM, and 165 for IgD, IgG, and

IL6R. These values were centered within each panel and carried

into further analysis.

Luminex Assay
30 HapMap cell lines were screened with a multiplex antibody

bead kit from Biosource (Cytokine 25-Plex for Luminex (Catalog

#LHC0009)). Of the 25 cytokines originally selected for this assay,

8 were reliably detectable (lower concentration: IL8, IL10,

IL12p40, TNFa, IP10; moderate concentration: MIP1a, MIP1b,

RANTES). Of these, it was found that measurements for MIP1a

and MIP1b were strongly correlated; thus we decided to include

only MIP1b in further experiments. These 7 cytokines were assayed

in the remainder of the cell lines according to the following protocol:

One cc for each LCL was placed into a single well of 96-deep

well plate. The samples were centrifuged at 500 rpm for 5 minutes

at room temperature. The supernatant was placed into a new 96-

well plate, and placed dry ice to be stored at 280 degrees All

assays were performed on a single thaw.

The cytokines were measured following the manufacturer’s

protocol. In order to ensure that the measured cytokine

concentration fell in the linear part of the standard curve, the

lower concentration cytokines were multiplexed together (final

dilution 1:2); and MIP1b and RANTES were multiplexed together

(final dilution 1:6).

The concentration of each cytokine was calculated based on the

standard curve generated by the same plate, after subtracting out

the ‘‘blank’’ background. A 3-parameter model was used to

convert median fluorescent intensity (MFI) to protein concentra-

tion (ng/ml). A subsequent correction was applied to account for

the dilution factor at the time of the assay. All final concentrations

are expressed as pg/ml and log-transformed. 262 cell lines were

successfully measured for IL10, IL12, IL8, IP10, and TNFa, and

266 measurements were obtained for MIP1b and RANTES. (79

and 87 biological replicate measurements were also obtained for

the above two sets of cytokines respectively.)

RNA Preparation and Affymetrix Expression Profiling
All LCLs were cultured in the fashion described above. Prior to

the plating of cells for the Drug Response Assay, 56105 cells were

set aside for RNA extraction. Cells were immediately lysed with

Trizol Reagent (Invitrogen). RNA was collected according to the

manufacturer instructions. 1.25 ug total RNA (OD.1.8) was

diluted to a total volume of 10 uL. RNA was processed and

hybridized onto Affymetrix Human U133A whole genome RNA

expression genechip arrays according to the manufacturer’s

protocol. Gene expression summary values for the whole dataset

were computed by RMA[40,41] and log-transformed. Measure-

ments were successfully obtained for 257 HapMap cell lines in the
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main experiment, for 64 biological replicates, for 24 cell lines

originally thawed at the WTSI, as well as multiple replicates of 5

cell lines derived from chimpanzees. (Expression data is available

on GEO Accession # GSE11582).

For analysis, the dataset was further processed as follows: 1) The

,22 K total probe sets on the Affymetrics U133A were restricted to

the 9084 judged expressed (p-value,0.06) by the Affymetrix software

in at least 2/3 of 50 randomly selected scans. 2) These 9084 expressed

probes were matched by Genbank transcript accession number

(NM_#) to the 13,300 targets judged expressed by the same criterion

in the WTSI Illumina HapMap experiments (using the probability of

detection p-value output by the Illumina software.) This yielded a

reduced set of 3600 Affymetrix probes (3592 Illumina targets) whose

transcripts were reliably detectable in both experiments. 3) To obtain

a comparable dataset from the WTSI Illumina data, we took the

median over their 4 technical replicates for each target and quantile

normalized across all samples. 4) We averaged within each gene

symbol, in each dataset, for each sample, to get the set of 3538 genes

expressed in both experiments and measured on both platforms. 5)

To prevent family structure from introducing bias, the dataset was

restricted to unrelated individuals only for the analyses in Figures 3–6:

198 each in the main Broad and WTSI experiments, 49 biological

replicates at the Broad, and 16 samples for whom RNA was extracted

at the WTSI and measured in both locations. Both centered (for each

gene within each panel) and uncentered data is available in http://

www.broad.mit.edu/mpg/pubs/hapmap_cell_lines/ and were each

used as appropriate.

Relative EBV and mtDNA Copy Number
All previously collected DNA was diluted to PCR concentration of

2.5 ng/uL and arrayed in 384 well storage plates (AbGene Cat

No. AB-0564). Custom TaqMan assays were designed using Primer

3 (http://frodo.wi.mit.edu/) and ordered from Applied Biosystems.

The EBV copy number assay interrogated a 66_bp fragment at the

DNA polymerase locus (EBV forward primer 59GACGA

TCTTGGCAATCTCT39, EBV reverse primer 59TGGTCATG-

GATCTGCTAAACC39, EBV probe 596FAM-CCACCTC-

CACGTGGATCACGA-MGBNFQ39). The mtDNA copy number

assay examined a 72 bp fragment at the ND2 locus (mtDNA forward

primer TGTTGGTTATACCCTTCCCGTACTA, mtDNA re-

verse primer CCTGCAAAGATGGTAGAGTAGATGA, mtDNA

probe sequence 596FAM-CCCTGGCCCAACCC-MGBNFQ39).

As an internal reference, a 90 bp assay from the NRF1 locus on

chromosome 7 was multiplexed with EBV or mtDNA (NRF1

forward primer 59CTCGGTGTAAGTAGCCACAT 39, NRF1

reverse primer 59GAGTGACCCAAACCGAACAT 39, NRF1

probe 59VIC-CACTGCATGTGCTTCTATGGTAGCCA-

MGBNFQ 39). Equal efficiency of amplification was observed for

each assay in the multiplex reaction. Final Concentrations for EBV

primers, mtDNA primers, EBV probe, mtDNA probe, NRF1

primers and NRF1 probe were .25 uM, .25 uM, 10 uM, 10 uM,

1 uM and 10 uM respectively. 5 ng of DNA template was used for

each TaqMan reaction performed according to the manufacturer’s

protocol. Relative EBV and mtDNA copy number was determined

by the difference of CT method[42]. Log-transformed. EBV

measurements were obtained when cell lines were first received

from Coriell (257), during the main batch of experiments (257), and

for the biological replicate set (86). Mitochondrial DNA measure-

ments were obtained only for 252 cell lines in the main experiments.

Fraction of RNA Variance Explained by Cellular
Phenotype or eQTL (Figure 4)

We are interested in the fraction of gene-trait (or gene-eQTL)

relationships that are real (i.e. would reach statistical significance

given enough samples) and above a given r2 thresh-hold in the

current sample. So, we want P(real, r2 . = c) in joint distribution

notation, i.e. a relationship can be real (non-null) or spurious (null)

and can exceed a certain threshold or not. By regressing a trait on

multiple genes, we observe: P(r2 . = c). It is the fraction of

relationships exceeding any given threshold, the green curve. By

permutation, we also have: P(r2 . = c|not_real), the blue (average of

black) curve. So, we write, by conditioning on whether a

relationship is real or not:

P r2
w~ c

� �
~

~P r2
w~ c realj

� �
P realð ÞzP r2

w~ c not realj
� �

1{P realð Þð Þ

~P real, r2
w~ c

� �
zP r2

w~ c not realj
� �

1{P realð Þð Þ:

Or, rewriting, we have:

P real, r2
w~ c

� �

~P r2
w~ c

� �
{P r2

w~ c not realj
� �

1{P realð Þð Þ:

Everything on the right hand side is known, except P(real), the true

proportion of gene-trait relationships in the data. This can

theoretically be estimated ala Storey et al. 2003 [43] but the

estimate can be unreliable in the setting of dependencies, as is the

case in our data since genes are largely in clusters. So, we take the

worst case scenario, setting P(real) = 0. Thus, we have:

P real, r2
w~ c

� �
§P r2

w~ c
� �

{P r2
w~ c not realj

� �
:

So, P(r2 . = c)2P(r2 . = c|not_real) is then a lower bound for P(real,

r2. = c), the black curve. It is important to note that the

interpretation of this lower bound is limited to the sample size

used in the analysis. Given more samples, the estimate will change

to even more genes being affected by traits or eQTLs, albeit at

lower r2s.

Decomposing Gene Expression into Inter- and Intra-
Components (Figure 5)

To estimate the amount of inter- and intra- individual variation

present for each gene in the ,50 unrelated individuals thawed and

measured twice at the Broad Institute, we fit a random effects

model of the form yij = m+ai+eij, where i indexes the individuals,

and j is 1 or 2 for the biological replicate being considered. The

estimated variance component s2
a is then the inter-individual

variation in gene expression for the gene, while the residual

variance s2
e is the intra-individual variation. To evaluate the effect

of a cis-eQTL or cellular phenotype on an RNA, a fixed effect x

corresponding to trait was then added to the model to get:

yij = m+bxij+ai+eij. The resultant change in variance components

s2
a and s2

e can then be interpreted as the ‘‘effect’’ of that trait or

snp on RNA expression. The directionality of the effect is clearly

only known for SNPs, but the nature of relationship (inter-, intra-,

or both) can be examined for any trait. It’s worth pausing to reflect

on what these ‘‘effects’’ mean: If including a QTL SNP genotype

in the model reduces inter-individual variance (as the overwhelm-

ing majority of SNPs do, Figure 5A), it implies that fixed

differences in genotypes (QTLs) between individuals correlate to

fixed differences in expression between individuals in the

corresponding gene. (as one would expect) If, on the other hand,

the intra-individual variance component is reduced when

accounting for a given trait, the implication is that day-to-day

variations in the trait correspond to day to day variations in the
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RNA. As would be expected, some genes also show a combination

of the two effects. Finally, these estimates are quite noisy, suffering

from random fluctuations in RNA levels, measurement error, and

the relatively small sample size available for the analysis;

estimation is likely even less reliable for weaker effects.

Nevertheless, the analysis is instructive for the stronger signals

and overall patterns and would improve given more samples and

technical replicates.

GWAS for Drug Response
1,045,141 autosomal SNPs with MAF.10% in each of the 3

(CEU, YRI, CHB/JPT) HapMap panels were selected from the

Phase 2 HapMap build 21 for association testing to drug response

phenotypes. The between/within family model of association was

tested for each SNP against each drug, in each panel indepen-

dently, using PLINK[32] v1.02 with options ‘‘–qfam-total –geno 1

–aperm 100 100 000 000 0.00000005 0.0001 5 0.001’’. For each

drug, p-values for each SNP were then combined across panels

using Fisher’s method. 25,735 X-chromosome SNPs were tested

analogously, but using an additive model on unrelated individuals

only with PLINK command line ‘‘–assoc –geno 1’’; none exceeded

5e-8. QQ plots for the autosomal SNPs for each drug are available

at: http://www.broad.mit.edu/mpg/pubs/hapmap_cell_lines/

snps_vs_drug_response_pvalues/.

R – Aside from GWAS scans performed using PLINK, all other

analyses were performed using R version 2.5.0[44].

Supporting Information

Figure S1 Heritability power estimate. A power calculation was

performed for the growth-rate and ATP level heritability estimates

using the R package pwr (v1.1). Power to detect narrow-sense

heritability (h2) is plotted as a function of heritability. The

significance threshold (alpha) is set to 0.05. Sample sizes of the

power calculation are set to the number of fully phenotyped trios

used in the heritability estimates: N = 51 for ATP level and N = 37

for growth rate. The following assumptions were made in the

power calculation: s2
mother =s2

father =s2
offspring = 1; covarian-

ce(offspring, mother) = covariance(offspring, father); covariance

(mother, father) = 0. Plot shows that the heritability estimates are

not well-powered to detect heritability,0.5.

Found at: doi:10.1371/journal.pgen.1000287.s001 (0.01 MB PDF)

Figure S2 Drug response GWAS power estimate. A power

calculation was performed for the drug response GWAS using the

R package pwr (v1.1). Power to discover a QTL is plotted as a

function of the fraction of variance in drug response the putative

QTL explains. The significance threshold (alpha) is set to the

genome-wide significance level of 5e-8. As the GWAS was

performed in trios, two estimates are plotted: (1) a lower bound

on power corresponding to the scan including only successfully

measured unrelated individuals (i.e., no useful information from

trio kids has been derived); and (2) an upper bound on power

corresponding to trio kids providing as much information as

another unrelated individual. As trio kids actually provide an

intermediate amount of extra information, true power of the study

lies between the two bounds. Plot shows that the GWAS is only

well-powered to detect strong (.15% variance explained) drug

response QTLs.

Found at: doi:10.1371/journal.pgen.1000287.s002 (0.01 MB PDF)

Figure S3 Direction of SNP-Drug response association. For

each tuple (WTSI – red, Broad – green) in Figure 6, the product of

the correlation (r) between SNP and RNA and the correlation

(rho) between RNA and Drug is plotted against the correlation (r)

between SNP and Drug. Black lines separate the plot into the 4

quadrants. Gray dotted lines show the expected distribution of

associations between SNP and Drug under the ‘‘null’’ model

simulated in Figure 6B. Plot shows that the direction of association

SNP-Drug response tends toward the direction predicted from the

directions of the SNP-RNA and RNA-Drug correlations (i.e., if the

major allele drives the RNA up and more RNA makes the cell-line

more sensitive to drug, then the major allele should make the cell-

line more sensitive to drug). This tendency would not be expected

by chance alone.

Found at: doi:10.1371/journal.pgen.1000287.s003 (0.01 MB PDF)

Figure S4 Winner’s curse in eQTL discovery. Simulations were

performed to demonstrate that effect sizes of weaker eQTLs are

overestimated, on average. Specifically, for effect sizes (r2) between

0.01 and 0.50, 100,000 datasets of 198 values each (corresponding

to the sample size of the analysis in Fig. 6) were simulated from a

bivariate normal distribution with mean = (0,0), variances = (1,1)

and covariances = sqrt(effect size). Datasets with observed corre-

lation (r2).0.08 were then considered: For each simulated effect

sizes, the average difference (bias) between the observed and

simulated effect size is plotted, together with the standard

deviation of the distribution of differences. Plot shows that weaker

eQTLs are usually over-estimated, even for true effects that are

above the detection threshold. On the other hand, estimates of

effect sizes of stronger eQTLs are unbiased, on average.

Found at: doi:10.1371/journal.pgen.1000287.s004 (0.14 MB PDF)

Table S1 Correlation between relative drug responses on

replicate plates.

Found at: doi:10.1371/journal.pgen.1000287.s005 (0.13 MB PDF)

Table S2 Correlation between relative drug responses in

independent experiments.

Found at: doi:10.1371/journal.pgen.1000287.s006 (0.12 MB PDF)

Table S3 Correlation between relative drug responses and

growth rates.

Found at: doi:10.1371/journal.pgen.1000287.s007 (0.17 MB PDF)

Table S4 Correlation between growth-rate corrected EC50s for

each of the drugs and growth rates.

Found at: doi:10.1371/journal.pgen.1000287.s008 (0.17 MB PDF)

Table S5 Correlation between growth-rate and ATP-corrected

EC50s for each of the drugs.

Found at: doi:10.1371/journal.pgen.1000287.s009 (0.15 MB PDF)
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