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Genome-wide association studies (GWAS) have identified common
variants of modest-effect size at hundreds of loci for common auto-
immune diseases; however, a substantial fraction of heritability
remains unexplained, to which rare variants may contribute1,2. To
discover rare variants and test them for association with a pheno-
type, most studies re-sequence a small initial sample size and then
genotype the discovered variants in a larger sample set3–5. This
approach fails to analyse a large fraction of the rare variants present
in the entire sample set. Here we perform simultaneous amplicon-
sequencing-based variant discovery and genotyping for coding
exons of 25 GWAS risk genes in 41,911 UK residents of white
European origin, comprising 24,892 subjects with six autoimmune
disease phenotypes and 17,019 controls, and show that rare coding-
region variants at known loci have a negligible role in common
autoimmune disease susceptibility. These results do not support
the rare-variant synthetic genome-wide-association hypothesis6

(in which unobserved rare causal variants lead to association
detected at common tag variants). Many known autoimmune dis-
ease risk loci contain multiple, independently associated, common
and low-frequency variants, and so genes at these loci are a priori
stronger candidates for harbouring rare coding-region variants
than other genes. Our data indicate that the missing heritability
for common autoimmune diseases may not be attributable to the
rare coding-region variant portion of the allelic spectrum, but per-
haps, as others have proposed, may be a result of many common-
variant loci of weak effect7–10.
Recent large-scale human sequencing studies have revealed an

abundance of rare variants (which we define as minor allele frequency
(MAF), 0.5%) and shown that these are geographically localized and
are more likely to have deleterious functional consequences11,12. In the
largest sample size studied to date12, 202 genes in 14,002 people were
re-sequenced, and,95%of exonic variants identifiedwere found to be
rare, with 74% observed in only one or two subjects. More broadly,
across,15,000 genes, similar findings were observed in recent exome-
sequencing studies of 2,440 and 6,515 subjects13,14. Importantly, these
studies demonstrate that even if we had reference variation databases
fromamillion subjects,most of the rare-variant allelic spectrumof any
given sample set (for example, a case–control cohort) will be unique
and only identifiable by direct re-sequencing of the entire sample set.

There are only a handful of published examples of rare coding-region
variants associated with common autoimmune diseases (although
many examples in familial/Mendelian immune-mediated diseases).
Coding-region variants in IFIH1 associated with type 1 diabetes
(MAF in controls5 0.67–2.2%)3, TYK2 with multiple autoimmune
diseases15 and IL23R with inflammatory bowel disease5, for example,
are low frequency (which we define as MAF5 0.5–5%) rather than
particularly rare. In other examples, the existing evidence for asso-
ciation, and/or the effect sizes, are relatively weak (for example,
CARD14 and psoriasis16, IL2RA and IL2RB and rheumatoid arthritis17).
The association of rare coding-region variants ofNOD2 (also known as
CARD15) in Crohn’s disease probably provides the best example,
albeit three low-frequency variants comprise over 80% of all the dis-
ease-causingmutations18.Most of the studies also lose power (especially
for tests inwhichmultiple rare variants are pooled into a single analysis,
for example by gene) by initially sequencing only a small sample subset
rather than testing the entire rare-variant content of a large case–control
sample set. We sought to improve on these methods by performing
highly multiplexed sequencing of sufficiently high quality to enable
direct genotyping in the entirety of a large autoimmune disease case–
control collection.
We selected subjects from a single population—individuals of white

Northern-European ethnicity living in the UK (Methods)—to mini-
mize any effects of population stratification. We selected to re-
sequence all RefSeq exons for 25 genes from 20 GWAS-identified risk
loci showing overlap between six common autoimmune disease phe-
notypes (autoimmune thyroid disease, coeliac disease, Crohn’s disease,
psoriasis,multiple sclerosis and type 1 diabetes).All genes studiedwere
fromrisk loci for at least twophenotypes, all genes had known immune
system function, 18 out of 20 loci had either a single candidate immune
gene or all immune genes at a locus were selected (the remaining two
loci had partial transcripts of another immune gene within the 0.1 cen-
timorgan (cM) linkage disequilibrium block), and all genes and loci
were densely genotyped on the Illumina ImmunoChip (Supplemen-
tary Table 1)19. We attempted high-throughput sequencing of 52,224
samples (including positive and negative controls, and repeats). We
performed extensive quality control on both samples and variant calls
(Methods). The final data set comprised 41,911 phenotyped indivi-
duals (autoimmune disease cases and controls), with ImmunoChip

1Blizard Institute, Barts and The London School of Medicine and Dentistry, QueenMary University of London, London E1 2AT, UK. 2Peninsula College of Medicine and Dentistry, Barrack Road, Exeter EX2

5DW, UK. 3University of Cambridge, Department of Clinical Neurosciences, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK. 4Division of Genetics andMolecularMedicine, King’s College London School

of Medicine, 8th Floor TowerWing, Guy’s Hospital, London SE1 9RT, UK. 5Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 6Oxford Centre for Diabetes Endocrinology andMetabolism,

University ofOxford,OxfordOX37LJ, UK. 7JuvenileDiabetesResearch Foundation/WellcomeTrustDiabetes and Inflammation Laboratory, DepartmentofMedicalGenetics, Cambridge Institute forMedical

Research, University of Cambridge, Cambridge CB2 0XY, UK. 8Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK. 9Department of Molecular Biophysics and Biochemistry,

W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut 06510, USA. 10Department of Medicine, University of Cambridge School of Clinical Medicine,

Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK. 11Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 12Institute of Genetic Medicine,

Newcastle University, Newcastle upon Tyne NE1 3BZ, UK. 13Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre,

Charterhouse Square, London EC1M 6BQ, UK. 14Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908-0717, USA. 15Gastrointestinal Unit, Molecular Medicine Centre,

University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. 16Barts and The London School of Medicine and Dentistry, QueenMary University of London, London E1 2AT, UK. 17University

College London Genetics Institute, Gower Street, London WC1E 6BT, UK.

0 0 M O N T H 2 0 1 3 | V O L 0 0 0 | N A T U R E | 1

Macmillan Publishers Limited. All rights reserved©2013

www.nature.com/doifinder/10.1038/nature12170


array genotypes available for 32,806 of these individuals (Supplemen-
tary Table 2). We discovered 4,377 variant sites across all amplicons,
and the genotype call rate was 99.9989% (reference homozygote aswell
as non-reference genotypes) across 41,911 individuals. Of these, 2,990
variants were in protein-coding regions (including exon splice sites) of
the 25 genes (Table 1 and Supplementary Table 3); 97.1% of which are
rare (MAF in 17,019 controls,,0.5%); 73.6% are novel when compared
with current published data sets (dbSNP137, 1000 Genomes Project,
National Heart, Lung, and Blood Institute (NHLBI)) containing.6,000

individuals and 67.3% are novel compared to an unpublished data set
of 25,994 exome-sequenced individuals (D. G. MacArthur, personal
communication); and 68.9% were only seen in one (singleton) or two
(doubleton) individuals. These proportions of novel, and rare, variants
are similar to recent data from other large re-sequencing studies12.
Our very high coverage data (99.8% of 183.4million (site X sample)

genotype calls had a read depth of$40 and 96.6% had a read depth of
.100; Supplementary Fig. 1) enabled stringent data filtering on call
rate per sample, per variant site, and other criteria (Methods). To
confirm data quality, we performed further experiments and analyses
as follows: (1) we genotyped one control sample 296 times (on differ-
ent 48-sample microfluidic chips), and the genotype call error rate
was two non-consensus genotype calls of 1,295,581 called genotypes
(0.00015%); (2) 32,806 out of 41,911 subjects also had dense
ImmunoChip genotyping data at the 25 genes, and genotype concord-
ance at 91 variant sites genotyped on both platforms was 99.994%; (3)
transition/transversion (Ti/Tv) rates, a quality-control measure based
on expected human mutation types, were 2.434 at coding-region
variants (2.427 at singletons), 2.44 at rare (MAF, 0.5%) variants
(2.437 at singletons) and 2.275 at novel variants (2.273 at singletons)
(definitions in Table 1); (4) we selected all (35) nonsense single nuc-
leotide variants (SNVs) and all (39) frameshift insertions/deletions
(indels) in the ImmunoChip-genotyped samples for Sanger sequen-
cing: two variants failed assay/PCR (polymerase chain reaction) design
and there was one false-positive SNV and one false-positive indel
(overall false-positive rate5 2.8%). All 70 validated SNVs and indels
had the same alleles in high-throughput and Sanger-sequencing

Table 1 | Variant types in protein-coding regions of 25 genes in
41,911 phenotyped individuals

Variant type All variants Rare

(MAF,0.5%)*

Novel{

Nonsynonymous SNV 1,792 1,758 1,379
Splicing SNV 86 85 65
Stopgain SNV 47 47 42
Synonymous SNV 1,024 972 674
Frameshift indels 31 31 31
Nonframeshift indels 10 10 10
Total variants 2,990 2,903 2,201

Singleton 1,602 1,598 1,411
Doubleton 470 468 378

Numbers shown are after quality-control steps. Annotation performed with GENCODE V14 gene

definitions. Triallelic (n5124) and quadrallelic (n53) sites (combined SNVs and indels) are shown as

multiple separate variants with the appropriate annotation for each non-reference allele.

*MAF in 17,019 sequenced controls.

{Not seen in dbSNP137, or 1000 Genomes Project (April 2012 release), or NHLBI (data release

ESP6500SI, with 6,503 individuals).
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Figure 1 | Association analyses of discovered rare functional variants in
autoimmune diseases. We define rare functional variants as MAF, 0.5% in
17,019 controls and predicted nonsynonymous, premature-stop or splice-site
annotation. Quantile–quantile plots compare observed versus expected test-
statistic distributions, with shading indicating 99% confidence intervals. Full
results are available in SupplementaryData. Each of six individual diseases, and
all autoimmune diseases combined, were tested as phenotypes. a, Gene-based
C-alpha test (25 genes by 7 phenotypes, n5 41,911 subjects) allowing for both
risk and protective effects for rare functional variants. Singleton variants pooled
into a single binomial count per phenotype. b, Gene-based burden tests (25
genes by 7 phenotypes, n5 41,911 subjects) comparing summed allele counts
for rare functional variants in cases versus controls with Fisher’s exact test.

c, Conditional gene-based burden test (25 genes by 6 phenotypes, n5 32,806
subjects): rare functional-variant allele counts are summed for each individual
per gene and introduced in a logistic regression, including ImmunoChip
covariates for multiple independent top (common) variant signals selected on
the basis of a stepwise regression (down to P. 1024). The psoriasis phenotype
was not tested as most samples do not have ImmunoChip data. d, Count of
case-unique rare alleles (UNIQ) tests (25 genes by 7 phenotypes, n5 41,911
subjects): compares the number of rare functional variants only observed in
cases with the distribution of this value upon random permutation (10,000
times) of the phenotypes. e, Count of control-unique rare alleles (UNIQ) tests:
same as d but for rare functional variants uniquely observed in controls.
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assays; (5) proportions of rare, and of known, variants were similar to
those found by other large sequencing studies, and we identified no
common or low-frequency novel variant sites.
We first attempted to identify any low-frequency or rare variants of

larger effect.We performed for each coding-region variant and each of
seven phenotypes (including all autoimmune disease cases combined)
a single-variant association analysis. Only previously reported loci
were observed with common variants (MAF. 5%), as expected. We
identified three low-frequency (MAF5 0.5–5%) and rare (MAF in
17,019 controls5,0.5%) exonic variants with single SNP association
P, 1024 (chosen as a partial Bonferronimultiple testing correction for
25 genes and 7 phenotypes, but not correcting for all variants per
gene) (Supplementary Table 4 and Supplementary Data). We next
analysed low-frequency and rare exonic variants, conditioning on
common-variant non-coding signals at each locus, and observed no
additional association signals (Supplementary Data). An association
between type 1 diabetes and the low-frequency UBASH3A SNP
rs17114930 was observed, but conditional regression analysis showed
this signal to be secondary to a stronger common-frequency variant/
haplotype previously identified by GWAS20. We identified novel low-
frequency (nearly ‘common’ as MAF in 17,019 controls 5 4.97%)
NCF2 coding-region variant associations with coeliac disease at two
SNPs (rs17849502, nonsynonymous; rs17849501, synonymous; in
almost complete linkage disequilibrium r

2
5 0.992). Both variants

were present on the Illumina ImmunoChip, but just failed quality-
control criteria in our previous coeliac disease study owing to missing
data19. We replicated the UK findings in 4,313 coeliac cases and 3,954
controls (European samples, Methods; rs17849502 P5 4.463 1025

(Cochran–Mantel–Haenszel test), odds ratio 1.35 (95% CI5 1.17–
1.55)). Logistic regression analysis conditioning on rs17849502 in
the UK re-sequencing data set revealed no further single-variant coel-
iac disease association signals belowP, 1024.NCF2 is a component of
the neutrophil NADPH oxidase respiratory burst complex. Different
disease-causing mutations cause the recessive Mendelian phenotype
chronic granulomatous disease. The rs17849502/H389Q variant is
also associated with the autoimmune disease systemic lupus erythe-
matosus21. Functional studies have shown that the minor allele of
rs17849502/H389Q reduces the binding efficiency of NCF2 to the
guanine nucleotide-exchange factor VAV1 (ref. 21). These data now
implicate a disease mechanism of impaired neutrophil function in
coeliac disease, a condition previously thought to be of predominantly
B- and T-cell-mediated immunopathogenesis, and where neutrophils
may have a role in regulating adaptive immunity22.
We noted that even with ,7,000 cases and ,17,000 controls the

power to detect association signals using single-variant tests for variants
(MAF, 0.5%) of modest effect (for example, odds ratio, 3) is limited
(Supplementary Fig. 2) and therefore we performed gene-based pooled-
variant association tests to better detect the combined effect of multiple
variants. We defined coding-region variants as functional candidates if
the variants were rare (MAF in 17,019 controls5,0.5%) and predicted
to be of potential functional impact (nonsynonymous, premature stop,
splice-site altering; see Methods). We pooled variants (by gene) in ana-
lyses to detect different scenarios (Fig. 1 and Supplementary Data),
including the C-alpha test, which can detect a combination of risk and
protective variants; burden tests to detect either an excess of risk variants
in cases or protective variants in controls; a modified version of the
burden test using conditional regression and common-variant non-
coding signals at a locus as covariates; a test to detect an excess of rare
variants seen uniquely in cases (the case or control unique tests being
particularly suitable for the study of the large numbers of singleton and
doubleton variants we observe); and a test to detect an excess of rare
variants seen uniquely in controls. The distribution of association stat-
istics for all five pooled gene tests across each of the six or seven pheno-
types tested was consistent with the global null of no association.
On the basis of these results, in the largest (to the best of our know-

ledge) human disease sample sequencing study to date, we find little

support for a significant impact of rare coding-region variants in
known risk genes for the autoimmune disease phenotypes tested.
Our data provide little stimulus in support of large-scale whole-exome
sequencing projects in common autoimmune diseases. Using average
genetic-effect estimates from our data (Methods), over all loci and
phenotypes we have tested, we estimate that rare variants contribute
to less than 3% of the heritability explained by common variants at
these known risk loci23.

METHODS SUMMARY
Sequencing. DNA (corresponding to exonic sequence of 25 autoimmune disease
risk genes) was PCR-amplified in a multiplexed microfluidics assay (Fluidigm
Access Array). PCR amplicons from a sample were pooled, and barcoded with
one of 1,536 unique ten-base-pair sequences. Libraries of 1,536 samples were
sequenced on Illumina HiSeq instruments. Reads were aligned to the GRCh37
human reference and SNVs and small indels called. Samples and called variants
were extensively filtered on the basis of call rate andother criteria. Selected variants
were validated by Sanger dideoxy sequencing. Genotype data from Illumina
ImmunoChip array-based genotyping was merged with Fluidigm sequencing-
based genotypes.
Statistical analysis. Statistical analysiswas performed inR, andusing PLINK/SEQ
software.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Gene selection.All genes studied (listed in Supplementary Table 3) were risk loci
for at least two phenotypes, had a known immune system function, were from loci
with only a single strong candidate immune gene (or all immune genes were
selected at four loci: IL18R1, IL18RAP; CTLA4, CD28, ICOS; IL2, IL21; PTPRK,
THEMIS), and all genes and loci were densely genotyped with all 1000 Genomes
pilot project variants on the Illumina ImmunoChip (for design of this chip, see
ref. 19). Additional criteria favouring locus selection were: known multiple inde-
pendent association signals, risk (not necessarily same variants/haplotype or signal
direction) for many autoimmune diseases, fine-mapping or other data strongly
suggesting a single candidate gene, and smaller complementary DNA size.
Samples. UK samples for the six component immune disease phenotypes have
been described in previous publications (which also contain full details of Ethics
Committee approvals)19,20,24-27, as have the three control populations19,28. Informed
consent was obtained from all subjects. Individuals with self-reported autoimmune
diseasewere excluded from theUKBlood Services—CommonControls andNIHR
CambridgeBiomedical ResearchCentreCambridgeBioResource controls. Samples
with self-stated non-white European ethnicity were excluded (later further con-
firmed by ImmunoChip-based principal component ethnicity analysis for 32,806
samples). Samples with gross discordance with ImmunoChip genotypes and/or
with known gender or genotype-mismatch issues from previous GWAS were
excluded. Samples with known duplicates or relatedness (as distant as first cousins)
were excluded, relatedness was later confirmed by ImmunoChip genome-wide
identity-by-state analysis and by analysis of multiple rare-variant sharing in
Fluidigm sequencing data. Additional independent European samples genotyped
for rs17849502 (4,313 coeliac cases and 3,954 controls) were previously described19.
Wet-lab. PCR primers were designed for all RefSeq exons of 26 genes, and ampli-
cons selected to be 150–200 base pairs (bp) in size. There was minor primer design
dropout at IL18R1, STAT4,THEMIS andZMIZ1, although.94%of exon sequence
was still covered at these genes. Variant calls at the gene YDJC later proved unre-
liable with highly biased allele depths at heterozygote sites, probably due to the very
high exon GC content (,70%), and this gene was not further analysed nor is it
discussed elsewhere in this study. The total length of (overlapping) amplicons was
95,927 bp; with primers removed (still overlapping) 72,612 bp; and with primers
removed and unique sequence 58,550bp. PCR amplification was performed using
50ng genomic DNA per sample on the 48 sample/plate Fluidigm microfluidic
Access Array system. PCR primers for 511 PCR reactions were pooled up to 12-
plexperwell in 48 pools. Individual per sample perpool PCRreactions took place in
,35-nl reaction chambers with,300DNAhaplocopies per reaction. All pools per
sample were combined. Each sample’s pool was then individually barcoded in a
second PCR reaction with one of 1,536 10-bp Fluidigm-designed unique barcodes
(Fluidigm unidirectional sequencing protocol).
Sequencing. Thirty-four libraries (each of 1,536 barcoded samples) were gener-
ated. Libraries were first sequenced on an IlluminaMiSeq for rapid quality control
of the barcoding step, and to optimize loading concentrations/cluster density.
Libraries were then sequenced one per lane using 101-bp paired-end reads and
an 11-bp index read (the last base of each read being only used for chemistry cycle
phasing purposes) on Illumina HiSeq sequencers. Lanes were repeated if target
cluster density or target clusters passing filter were not achieved. Individual sam-
ples were de-multiplexed by Illumina CASAVA software, allowing zero mis-
matches per 10-bp barcode. Sanger sequencing was performed on PCR
products using an ABI 3730xl DNA analyser and ABI big dye terminator 3.1 cycle
chemistry. We sequenced all samples with rare-variant allele genotypes, and a
control sample, for the 74 sites selected.
Bioinformatics. PCR primers were trimmed from the 59 end of individual reads
using a modified version of btrim29. Trimmed sequences were aligned to the
GRCh37 human reference genome using gapped quality-aware alignment, and
base call quality recalibration implemented inNovoalign V2.07.18 with settings ‘-t
100 -H -g 65 -x 7 -o FullNW’. Data were realigned against known (1000 Genomes
and Mills-Devine 2-hit) indels and per-sample called indels. SNPs were called
using GATK 1.6-5 and settings ‘–min_base_quality_score 15 -stand_call_conf
30–baq CALCULATE_AS_NECESSARY -glm SNP–baqGapOpenPenalty 65–
downsampling_type BY_SAMPLE–downsample_to_coverage 250’ and then hard
filtered using GATK settings ‘QUAL,80.0 DP,20 MQ,40.0 QD,2.0
MQRankSum,-12.5 HRun.59 (several other recommended best practice
GATK settings were not appropriate for PCR amplicon data), and around indels.
Small indels (up to 15-bp gaps from Novoalign) were called using GATK and
settings ‘–min_base_quality_score 15 -stand_call_conf 30–baq CALCULATE_
AS_NECESSARY -glm INDEL–baqGapOpenPenalty 65–downsampling_type
BY_SAMPLE–downsample_to_coverage 250’ and then hard filtered using
GATK settings ‘QUAL,80.0 DP,20 QD,2.0’ (several other recommended
best-practice GATK settings were not appropriate for PCR amplicon data). The
most important of these settings were likely to be calling genotypes asmissingwith

sequencing depth,20 high-quality bases and theminimumPhred 15 recalibrated
base call quality score to define high-quality bases. Both SAMtools and VCFtools
software were also used to process data. SNP genotypes (including non-reference
genotypes) were called at all 58,550 bases of amplicon sequence. Samples with
,57,600 SNP genotype calls (98.4%, a threshold determined by inspection of the
call rate plot) were removed and scheduled for repeat processing. Clusters of very
close non-reference genotypes in an individual sample were removed. Non-
reference genotype sites were then identified across all samples, and VCF-level
data reduced to variants at polymorphic sites (in one or more samples). A com-
bined VCF file of all polymorphic sites and samples was then loaded into PLINK/
SEQ v0.09. Multiple-step filtering based on call rate per sample and call rate per
variant site was applied, with final requirements.99.95% call rate per sample and
per variant site. Lower call rate samples at this stage were also scheduled for repeat
processing.We removed variants if the sumof heterozygote genotype allele depths
was ,25% or .75%. The final filtered data was then exported to a VCF file
containing all variants and samples for analysis in R. ImmunoChip data was
loaded into Illumina GenomeStudio software from .idat files, and all samples
called together in GenomeStudio using the cluster settings as previously
described19. Data were merged with HapMap Phase 3 genotypes, principal com-
ponent analysis performed, and the first two principal components used to val-
idate ethnicity (Supplementary Fig. 3).

Barcode and sequencing amplicon performance. Barcode evenness was excel-
lent, with typically 99.0%of the 1,536 barcodes producing pass-filter read numbers
that were between 0.033% and 0.13% of the total pass-filter reads per lane (0.065%
expected), withmost of the failing barcodes tagging knownwater-negative control
samples or (based on repeat amplification with a different barcode) due to poor
DNA quality. Amplicon evenness was good, and for many genotype calls we
were required to downsample data to 250 bases per site per sample
(Supplementary Fig. 1). However, 10 of 511 amplicons effectively failed PCR. In
a typical analysis of 100 high-quality samples, 2% of the 58,550 unique amplicon
bases had a minimummean read-depth of,20, nearly all accounted for by the 10
failing amplicons.

Variant annotation. Annotation of all variants was first performed using
ANNOVAR (Feb 2013) and the GENCODE V14 data set. Coding variants were
identified. Rare functional variants were identified based on stop, frameshift indel,
nonsynonymous (SNV or 3n indel) or splice predictions. We performed an addi-
tional layer of annotation for high confidence loss of functionmutations, using the
methods described in ref. 30. The Variant Effect Predictor (VEP v2.5) tool from
Ensembl was modified to produce custom annotation tags and additional loss of
function (LOF) annotations. The additional LOF annotation was applied to var-
iants which were annotated as STOP_GAINED, SPLICE_DONOR_VARIANT,
SPLICE_ACCEPTOR_VARIANT, and FRAME_SHIFT and flagged if any filters
failed. Filters included: LOF is the ancestral allele; exon is surrounded by non-
canonical splice site (that is not AG/GT); LOF removes less than 5% of remaining
protein; LOF is rescued by nearby start codon which results in less than 5% of
protein truncated; transcript only has one coding exon; splice-sitemutationwithin
intron smaller than 15 bp; splice site is non-canonical OR other splice site within
same intron is non-canonical; unable to determine exon/intron boundaries sur-
rounding variant. A LOF variant is predicted as high confidence if there is one
transcript that passes all filters, otherwise it is predicted as low confidence. We
noted that LOF mutations were seen in 21 out of 25 genes, all were heterozygous
genotypes, and mainly (87 out of 97) as singletons or doubletons in the 41,911
samples (Supplementary Table 3).

Statistical analysis.Most analysis was performed in R using custom code (avail-
able on request). For tests using permutations (C-alpha, UNIQ-cases and UNIQ-
controls in Fig. 1), we randomly permuted in R the case–control status 10,000
times. The unconditional burden test (Fig. 1b) used a Fisher’s exact text.
Conditional burden tests used the glm function in R, including selected
ImmunoChip common variants as covariates (selection based on a stepwise
regression analysis up to 1024). For the C-alpha statistic computation (Fig. 1a),
the expected proportion of rare alleles in the case–control cohorts was set to the
proportion of cases and controls. Figure 1 was generated using the fact that under
the null of no association22log(P) is distributed as chi-squared with 2 degrees of
freedom. PLINK/SEQ v0.09 (http://atgu.mgh.harvard.edu/plinkseq/index.shtml)
was used for Ti/Tv statistics, and to confirm findings of R analyses (not shown).
We used PLINK/SEQ for the genotype concordance analysis between Immuno-
Chip and Fluidigm-sequencing data. Discordant calls were observed at 169 of
2,985,255 (0.0056%) genotypes, occurring at 36 out of 91 polymorphic variant
sites present in both data sets. We inspected Illumina ImmunoChip R theta
intensity plots for the discordant genotypes, and observed 8 discordant genotypes
to be likely due to ImmunoChip data mis-clustering, and 11 discordant genotypes
tobedue toa third or fourthobserved allele in thehigh-throughput sequencingdata.
At the sites with third and fourth alleles, we note the ImmunoChip array assays can
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only call two alleles, therefore is not possible to determine whether these sequence
genotype calls are real or errors. R code used for analysis is available from V.P.
Estimation of average genetic effect contributed by rare variants. For each
combination of locus by disease, we combined all rare functional variants (frequency
, 0.5% in 1,000 Genomes/NHLBI data sets and nonsynonymous, LOF or splicing)
in a burden statistic X and computed the combined frequency of X in the sample.
Using a logistic regression model with the disease phenotype as outcome, we esti-
mated the odds ratio associated with the burden variable X. This knowledge of
frequency and odds ratio for the burden variable X enables the estimation of the
average genetic effect (AGE, as defined in ref. 23) version of the variance explained.
We thencompared this variance at each combinationof locus/genewith thevariance
explained by what we consider to be a typical common variant association (odds
ratio 1.2, MAF 20%, assuming a single common variant per locus). To deal with the
uncertainty inestimatedodds ratio andobtaina confidence interval for this value,we
randomly sampled the odds ratio from their estimated distribution for each pair of
disease/locus. Averaging over the 150 combinations of 6 diseases by 25 loci, we
estimate the ratio of heritability explained for all rare variants byall commonvariants
to have a mean value of 1.6%, with a confidence interval of (1.2–2.3%). It is pointed
out in ref. 23 that theAGEestimate canunderestimate the true explained varianceby
rare variants. Nevertheless, assuming that rare variants are generally all risk or all
protective at a given gene, their simulations also show that the underestimation is
limited, in the range of a 25% decrease. Taking this conservative estimate of the
under-estimation level, we find the upper bound of the 95% of the confidence
interval to be 3.05%.Hence, our data indicate that the aggregate contribution of rare

variants to the heritability (,0.5% MAF, and averaged over these loci/diseases) is
unlikely toexceedapproximately 3%of theheritability assigned to commonvariants.
We acknowledge that a much larger underestimation (and therefore a much larger
heritability explained for rare variants) is possible in thepresenceof a combinationof
high risk and highly protective rare variants at the same locus. Although we cannot
exclude such scenario, it is unlikely to be widespread. We also assumed in our
estimates that rare variants act additively at the log scale. Although this assumption
is standard, we cannot exclude that a combination of rare variants results in a much
stronger predictive outcome than rare variants individually, hence underestimating
the heritability associated with rare variants.
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