
Genome-wide association studies (GWASs) have been 
successful in identifying genomic regions that influence 
the risk of human complex disease1. However, GWASs 
primarily make use of markers that are intended to 
represent causal variation indirectly, whereas, in prin-
ciple, next-generation sequencing (NGS) can directly 
identify the causal variants. This is perhaps the central 
advantage of sequencing approaches over standardized 
genotyping panels, especially given the growing recog-
nition that many common diseases could be influenced 
by fairly infrequent mutations in many different genes. 
At the same time, clinical geneticists are turning to 
next-generation sequencing approaches to overcome 
limitations of their traditional genetic tools. For these 
reasons, sequencing is rapidly becoming the primary 
focus of efforts to characterize the genetic bases of 
human diseases.

Despite the promise of NGS, our ability to generate 
sequence data currently outstrips our ability to interpret 
it accurately. It is noteworthy in this context that with-
out the codification of a generally agreed significance 
threshold for GWASs2,3, many more false-positive find-
ings would have been reported from GWASs. The central 
statistical guidelines that followed were strikingly simple: 
first, a proper account needs to be made for the number 
of possible independent tests; and, second, given that 
GWASs largely rely on indirect association to represent 
incompletely known variants, we lack sufficient informa-
tion to make meaningful distinctions among interrogated 

variants in terms of their prior probabilities of truly asso-
ciating with phenotypes. These two positions lead to a 
simple single statistical threshold to declare significance 
for association between a given polymorphism and phe-
notypes in a GWAS (by convention, P <5 × 10−8). Most of 
the polymorphisms that achieve P <5 × 10−8, after care-
ful consideration of the relevant quality-control meas-
ures and confounders, share the property of having been  
confirmed in additional studies.

Unfortunately, the same type of solution is not appli-
cable to sequence data, at least not immediately. The 
most fundamental reason is that sequence data reveal 
inherently different categories of variants that cannot 
reasonably be viewed as all having the same prior prob-
abilities of influencing diseases. Given the sample sizes 
available today, treating variants anywhere in the human 
genome as equally likely to influence phenotypes would 
often constitute too great a cost in terms of power to be 
acceptable to most contemporary researchers. For this 
reason, nearly all current sequencing studies treat dif-
ferent classes of variants differently, either implicitly or 
explicitly. By design, exome-sequencing data are predi-
cated on the idea that mutations influencing human 
phenotypes are more likely, base for base, to be found in 
coding sequence than elsewhere. Nonetheless, we cur-
rently have too little information about the full distribu-
tion of functional consequences for different kinds of 
variants in the human genome to allow simple quantita-
tive priors to be applied to variants in a universal fashion. 
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Priors

Used to reflect assumptions 

about the involvement of 

different classes of mutations 

before the evidence available 

from a given study is 

considered.
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Abstract | Next-generation sequencing is becoming the primary discovery tool in human 

genetics. There have been many clear successes in identifying genes that are responsible 

for Mendelian diseases, and sequencing approaches are now poised to identify the 

mutations that cause undiagnosed childhood genetic diseases and those that predispose 

individuals to more common complex diseases. There are, however, growing concerns that 

the complexity and magnitude of complete sequence data could lead to an explosion of 

weakly justified claims of association between genetic variants and disease. Here, we 

provide an overview of the basic workflow in next-generation sequencing studies and 

emphasize, where possible, measures and considerations that facilitate accurate 

inferences from human sequencing studies.
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Cluster density

The density of clonal 

double-stranded DNA 

fragment clusters bound to an 

Illumina flow cell, typically 

expressed as clusters per mm2. 

It is used as a quality-control 

metric early during the 

sequencing reaction: low 

cluster densities will result in a 

lower sequencing yield in the 

resulting fastq library, whereas 

very high cluster densities will 

result in poor sequence quality.

Locus heterogeneity

Refers to the number of 

different genes in the genome 

that can carry mutations that 

influence risk of given disease.

Allelic heterogeneity

Refers to the number of 

different mutations at a single 

gene that can influence risk  

of disease.

Structural variation

Occurs in DNA regions 

generally greater than 1 kb in 

size, and includes genomic 

imbalances (namely, insertions 

and deletions (also known as 

copy number variants)), 

inversions and translocations.

Despite these complexities, steps can still be taken 
to reduce the risk of false-positive claims, as outlined 
below. Moreover, as sample sizes increase over time, it 
will eventually become possible to carry out unbiased 
screens for variants anywhere in the entire set of the  
3 billion positions that constitute the human genome.

Although many recent reviews have outlined the 
potential utility of NGS in studies of both complex traits4 
and Mendelian diseases5, fewer reviews provide concrete 
overall guidelines for running an NGS study. Here, we try 
to fill this gap. We describe the NGS workflow in the fol-
lowing order: data generation, variant calling and anno-
tation, association statistics, appropriate standards of  
evidence, and how to interpret functional evaluation  
of candidate variants alongside association evidence.

Study populations

In this article, our focus is on studies of risk factors for 
disease in the inherited genome as opposed to studies of 
tumour genomes that have been reviewed elsewhere6,7. 
We consider study design questions in light of three 
increasingly common NGS applications: Mendelian dis-
eases involving the study of multiple affected individuals 
(in particular, those that are refractory to linkage, such as 
dominant mutations that compromise survival or repro-
duction); undiagnosed childhood disease; and common 
complex diseases, often in large case–control settings. 
Depending on the application and statistical tests used, 
different decisions are appropriate, particularly in rela-
tion to trade-offs between sensitivity and specificity. 
We therefore refer, where appropriate, to best practice 
considerations, depending on the application and study 
population.

Sequence data generation

Whereas the genotyping data are generally highly con-
sistent in GWASs, making it fairly straightforward to 
control for spurious signals associated with experimental 
artefacts, the sources of variation in generating sequence 
data are more varied and are currently less well under-
stood. Moreover, there are inherent trade-offs in call-
ing properties that have no analogue in the near perfect 
genotype calls that emerge from GWAS data. For exam-
ple, in the study of a single child with an undiagnosed 
genetic disease, sequencing and variant calling may be 

appropriately tuned to maximize sensitivity, whereas 
analyses of large case–control cohorts, especially when 
using aggregate statistics (see below), would generally 
seek to balance sensitivity and specificity.

For these reasons, it is currently necessary to adjust 
analysis routines to the precise question (or questions) 
being asked. Evidently, generating data for all samples 
that are to be analysed together using the same version 
of the same technology is desirable but is often difficult 
to achieve. Current next-generation sequencing involves 
numerous preparation steps using chemistry that is reg-
ularly updated and experimental procedures that can be 
variable (for example, fragmentation, and target enrich-
ment in whole-exome and other preparations).

Moreover, the sequencing reactions themselves can 
vary across lanes within a flow cell, across flow cells and 
across machines owing to variations in cluster density  
and other features8. Gradually, many of these sources 
of variation are being progressively reduced owing to 
improvements in sequencing methodologies; however, 
they still remain and are only partially accounted for 
by variant-calling tools (discussed below). For these 
reasons, it is important to be aware of which kinds of  
analyses are and are not sensitive to such variation.

How much data? The question of the amount of 
sequence to generate for a genome has been the subject 
of much debate. When the aim is to maximize variant-
calling accuracy, without regards to cost savings, then 
the generation of ~125 Gb of 2 × 100 bp data per human 
genome has been shown to be optimal9 for good single-
nucleotide variant (SNV) detection, yielding approxi-
mately 40-fold aligned depth of coverage (note that this 
conclusion applies to the more recent methods, which 
provide more uniform coverage of the genome than 
earlier methods). This level not only maximizes sensi-
tivity but also minimizes false positives, which are often 
expensive to follow up.

In designs in which the study population size is 
large (such as large case–control designs studying com-
plex diseases) and the variants of interest are expected 
to be present in multiple samples, lower coverage 
might be acceptable. For example, the 1000 Genomes 
Consortium estimated an optimal coverage of three- to 
fivefold for detecting variants in a population, given a 
fixed sequencing cost10,11. For many complex diseases, 
high locus heterogeneity and allelic heterogeneity12–14 mean 
that the variants of most interest may still be rare even in 
very large cohorts of cases. Connected to the challenge 
of allele heterogeneity, statistical approaches that seek 
to combine association evidence across multiple vari-
ants within the same gene will benefit from identifying 
as many of the variants as possible in each sample, and 
this mandates a high coverage. Low-coverage genomes 
further sacrifice substantial information about structural 

variation that can be inferred in high-coverage genomes, 
with most read-depth-based methods requiring  
a minimum coverage of tenfold for accuracy15.

In studies focused on identifying highly penetrant 
mutations, accurately determining the exact geno-
type in all samples is essential. For example, in studies 

Author addresses

2Department of Biostatistics and Bioinformatics, Duke University Medical Center, 

2424 Erwin Road, Suite 1102, Hock Plaza, Box 2721, Durham, North Carolina 27710, 

USA.
3Illumina Cambridge, Chesterford Research Park, Little Chesterford, Saffron Walden 

CB10 1XL, UK.
4Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre,  

30 Royal Parade, University of Melbourne, Parkville, Victoria 3010, Australia.
5Centre for Neural Engineering, Old Engineering Building, University of Melbourne, 

Parkville, Victoria 3010, Australia.
6Departments of Medicine, Austin Health and Royal Melbourne Hospital, University of 

Melbourne, Austin Hospital, 145 Studley Road, Heidelberg, Victoria 3084, Australia.
7Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, 

Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 14 | JULY 2013 | 461

© 2013 Macmillan Publishers Limited. All rights reserved



De novo mutations

Non-inherited novel mutations 

in an individual that result from 

a germline mutation.

Indel

An alternative form of  

genetic variation to single- 

nucleotide variants that 

represents small insertion  

and deletion mutations.

Insert size

The length of the fragmented 

sequence between ligate 

adaptors. In paired-end 

sequencing, the insert size 

generally ranges from 200 to 

500 bp.

Batch effects

Differences observed  

for samples that are 

experimentally handled in 

different ways that are 

unrelated to the biological  

or scientific variables being 

studied. If batch effects are 

not properly accounted for in 

sequence studies, they can 

generate false signals of 

association between genetic 

variation and the traits  

under study.

Library

The collection of processed 

genome fragments that are 

prepared for sequencing. In a 

bioinformatics context, the 

term may also generally refer 

to the set of sequences found 

in a single fastq file.

of undiagnosed conditions12 and of multiple patients 
affected with a Mendelian disease16, it has often been 
essential to identify de novo mutations in the proband 
by comparing the affected genome to those of the par-
ents. Here, high coverage of all samples is essential (for 
example, 60× or greater average coverage17) to facilitate 
improved sensitivity particularly in the parents to ensure 
that one of the parental alleles is not probabilistically 
missed, which would lead to suggestions of a putative 
de novo mutation in the child. On balance, our opinion is 
that many of the key goals of human genetics depend on 
determining individual genotypes with high confidence, 
and this requires high coverage.

Alignment and variant detection. Various algorithms 
are available for short-read alignment and variant detec-
tion18,19. Although this process is sometimes considered 
to involve two separate tasks, in reality it comprises 
several interdependent steps. As variant callers make 
assumptions about how the alignment process works, 
it is also necessary to harmonize variant callers and the 
alignment process18,20,21.

Detecting SNVs is often the most straightforward 
variant detection process. Many algorithms converge 
on a Bayesian approach that differs slightly in the 
prior assumption20–23 (TABLE 1). Several programs now 
enhance the initial SNV and small-indel variant detec-
tion approach in various ways. These approaches include 
a more sensitive read re-alignment for orphan read pairs 
and initially aligned reads with other anomalies, looking 
for clusters of read pairs with aberrant insert size distribu-
tions, de novo assembly of anomalously aligned reads24, 
and looking at copy number changes from differences 
in read depth.

Another way to gain sensitivity and consistency in 
variant detection is to make the variant calls among 
multiple samples together. The GATK suite of tools 

has successfully adopted this approach24. A consid-
eration for this approach is that multi-sample vari-
ant calling can introduce batch effects, depending on 
which genomes are considered together; this could 
in turn create subtle patterns of signal in some types 
of case–control analyses. For this reason, some large 
case–control studies may be best analysed using sam-
ples that have all been individually called or by carrying 
out multi-sample variant calling on all samples (both 
cases and controls) to be analysed together, as a set. 
Obvious challenges for the latter strategy include com-
putational restrictions on how many samples can be 
called together and the fact that adding new samples to 
a data set would necessitate the recalling of samples in 
this framework. However, some studies clearly benefit 
from multi-sample calling. For example, in screens for 
de novo mutations, there is a clear advantage to calling 
variants within each trio as a set25. In this way, variants 
that are securely called in the child but that show some 
evidence for the presence of the variant in the parents 
will be ‘caught’, reducing the number of candidate 
de novo mutations for follow-up evaluation. Recently, 
methods that are explicitly aware of the expected inher-
itance pattern have been proposed and can formally 
evaluate the likelihood of a violation of those patterns 
(for example, de novo mutations)17,26,27.

It is also worth noting that all stages of the process 
can, in principle, be tailored to calling specific kinds 
of variants. For example, adding sequence data from 
a library with larger insert sizes will facilitate detection 
of structural variants. There are aligners that have been 
specifically developed for structural variant calling, 
such as MR and MRS FAST28,29. There is, however, an 
advantage in cost and consistency to use not only a single 
data type but a single alignment routine for all infer-
ences about variation. It has recently been shown that 
it is possible to infer copy number status accurately in 

Table 1 | Examples of implemented algorithms for single-nucleotide variant detection

Program and URL (if available) Notes Refs

CASAVA (http://support.illumina.com/
sequencing/sequencing_software/
casava.ilmn)

Illumina platform software that is compatible with raw data produced 
by the Genome Analyzer and HiSeq sequencers

GATK UnifiedGenotyper Implements a Bayesian genotype likelihood model to estimate 
simultaneously the most likely genotypes and allele frequency in one 
or multiple samples

20,24

Platypus (www.well.ox.ac.uk/platypus) Uses local realignment and assembly to detect sensitively and 
specifically SNPs and short indels in low- and high- coverage data; 
most efficiently used with alignments produced by Stampy

21

Polybayes/PbShort (http://
bioinformatics.bc.edu/marthlab/
PbShort)

A Bayesian approach designed from various short-read technologies; 
packaged with computer programs for converting text format 
sequence files and assembly formats

88

SAMtools Provides various utilities for manipulating alignments in the SAM 
format, including sorting, merging, indexing, generating alignments 
and creating a consensus sequence. Also includes a Bayesian 
single-nucleotide variant (SNV) or short indel caller

22,89

SOAPsnp A Bayesian algorithm used to call consensus genotype incorporating 
the data quality, alignment and recurring experimental errors; 
supports alignments produced by SOAPaligner

23

For a more complete listing, see SNP discovery website.
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Variant call format files

(VCF files). A flexible text file 

format developed within the 

1000 Genomes Project that 

contains data specific to  

one or more genomic sites, 

including site coordinates, 

reference allele, observed 

alternative allele (or alleles) 

and base-call quality metrics 

(see Further information).

Polymorphism-

to-divergence ratios

Comparing sequence 

divergence across species with 

population polymorphism  

data (for example, McDonald–

Kreitman test) facilitates 

identifying where selective 

forces are acting on the 

genomic sequence.

Site frequency spectra

Reflecting the distribution of 

allele frequencies. They are 

defined by the number of sites 

that has each of the possible 

allele frequencies. Different 

forms of selection perturb the 

site frequency spectrum in 

known ways.

both unique regions of the genome and in segmental 
duplication regions using the same alignment data that 
are relied on to call SNVs and small indels15.

At present, SNVs seen across multiple samples are 
often sufficiently reliable in NGS data so that external 
validation is not required. However, screens for de novo 
mutations amount to a combined screen for both real 
de novo variants and sequencing anomalies. For this 
reason, putative de novo mutations should be confirmed 
by Sanger sequencing25,30–34 or some other independent 
technology. Similarly, indel and structural variant call-
ing remains less reliable than SNV calling, and in most 
applications such variants of interest should also be sep-
arately confirmed: for example, by Sanger sequencing or 
by real-time quantitative PCR, respectively.

Measuring sequence completeness and quality

Computationally, it is simple to run analyses on variant 
calls that are represented through variant call format files 
(VCF files)20,35, which is a standardized output format 
from variant-calling algorithms. Many types of analyses, 
however, require data for sites in individual samples in 
which no variant was called. For example, in studies of 
undiagnosed genetic disease in children12,36, it is neces-
sary to identify all genotypes that are clearly present in 
children, yet clearly absent in parents, to suggest de novo 
mutations. Here, it is important to know whether it is 
possible to have confidence that the parents do not have 
the genotype in question by checking the genotype qual-
ity and sequencing depth at the relevant site in the par-
ents. A similar situation is found in case–control studies, 
in which it is desirable to know whether a putative causal 
variant is truly not present in a set of controls or merely 
not called owing to missing or poor-quality data and 
in studying patients with a known Mendelian disease 
when it is desirable to establish how well known genes 
are ‘covered’.

Although the tertiary analyses and the common 
exchange of secondary results are made possible by the 
standardization of the file formats, there is currently  
no  standardized set of criteria for assessing the quality of 
variant calls versus no calls nor is there a standard frame-
work for structuring the data for larger study designs 
across hundreds or thousands of samples. Modern align-
ment and variant-calling algorithms produce an abun-
dance of quality-control metrics for each base call (for 
example, reads supporting an alternative allele, total read 
depth, read mapping quality, haplotype score, genotype 
likelihoods and combinations of metrics reflected by the 
variant quality score log odds ratio (VQSLOD score)20). 
Deciphering which metric or combination of metrics to 
include in downstream analysis is not always a simple 
task. It is desirable to maintain the flexibility of leverag-
ing many of the available metrics across variants called 
in individual samples or arbitrary groups of samples, 
depending on the primary aims of particular analyses.

The challenge is to structure variant calls, variant 
annotations, coverage data, quality metrics and sample 
relationships in such a way that maximizes the available 
computational resources while facilitating flexible data 
querying by downstream software. Ideally, software tools 

that allow interaction with such data should be usable by 
investigators who have little computational background. 
Some example approaches include batch VCF searches 
with VCFtools35, PLINK/SEQ and SVA37. The most 
general and flexible solution currently is to house the 
relevant data in a relational database (BOX 1). Finally, a 
direction that could gain popularity for addressing these 
types of analyses is the development of a specialized use 
case for the VCF by incorporating quality and depth 
information at homozygous reference positions, allow-
ing verification of the absence of a variant. An example 
of this is the genome VCF (gVCF).

Prioritizing and analysing variants

Currently, the fundamental challenge in interpreting 
NGS data is how appropriately to distinguish and to 
prioritize among types of genetic variants in interpret-
ing NGS. In a GWAS, it is clearly appropriate to treat all 
interrogated variants as having an equal prior probabil-
ity of real association with disease because the variants 
studied are generally markers for unknown causal vari-
ants. In the case of sequencing studies, however, we do 
have more information available for many of the interro-
gated sites, and this allows more meaningful distinctions 
to be made in terms of the a priori probabilities. Here we 
discuss data types that are commonly used to make dis-
tinctions among variants and the analysis routines that 
are currently available for incorporating them.

Information from population genetics. Ultimately, 
interpreting population sequencing data and designing 
association studies depends on how many human alleles 
have any effect on molecular function and phenotype. 
Here, population genetics provides a useful complement 
to association evidence by characterizing and quantify-
ing natural selection against deleterious alleles (that is, 
alleles that negatively affect fitness). However, we do not 
imply that all damaging and even pathogenic alleles are 
necessarily deleterious in an evolutionary sense or that 
all deleterious alleles are pathogenic.

Population genetics approaches are based, in prin-
ciple, on two related effects. First, deleterious alleles are 
much less likely to reach fixation in populations than 
neutral alleles. Second, deleterious alleles are less likely 
to be observed as common variants that segregate in the 
population. Proportionally more deleterious than neutral 
polymorphic variants are expected to be rare38. Thus, the 
inference of selection against deleterious alleles is usu-
ally based on a comparison of polymorphism-to-divergence  

ratios and site frequency spectra between functional cat-
egories of variants. An excess of rare alleles and a higher 
polymorphism-to-divergence ratio for variants in a more 
important functional category, such as nonsense and 
frameshift mutations, is often interpreted as presence of 
deleterious alleles.

The appropriate quantitative use of both of these 
signals can help to establish meaningful priors on 
variants in interpreting sequence data. For example, 
the power of various statistical methods for detecting 
association with multiple rare alleles at a locus depends 
on the fraction of alleles in a unit of analysis (for 
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example, genes) that are functionally important. Selecting  
the appropriate tests should therefore be informed by the  
expected proportion of functionally significant alleles.

Computational tools for predicting functional effects. 
A more fine-grained functional stratification can be 
achieved by applying computational methods for pre-
dicting the functional effect of amino acid changes, 
such as SIFT39, PolyPhen2 (REF. 40), MAPP41, SNAP42, 
MutationTaster43 and others44. These methods can 
discriminate between damaging and benign amino 
acid changes with an accuracy of 75–80%, and their 
utility in prioritizing variants has been reviewed in 
depth elsewhere44,45. Variants predicted to have dam-
aging effects on protein function have, on average, 
markedly lower allele frequencies and higher poly-
morphism-to-divergence ratios than do benign vari-
ants46,47. Despite the clear utility of these approaches in 
distinguishing classes of variants, the community must 
remain vigilant always to distinguish the assessments of 
whether a variant is or is not likely to be deleterious in 

an evolutionary context, from the question of whether 
a variant is or is not pathogenic for a given condition 
or set of conditions under study.

Information from Mendelian disease associations. 

Another possible resource for understanding the impact 
of variants is leveraging what is already known about 
the phenotypes associated with mutation in genes that 
are responsible for Mendelian diseases48,49. Resources 
housing this information, such as Online Mendelian 
Inheritance in Man (OMIM), can be readily interro-
gated for additional support regarding whether the 
variant (or gene) identified in a given study has been 
linked to the same or a similar phenotype in a previous 
study. It should be noted, however, that it is sometimes 
difficult to assess, in a formal way, whether a particular 
phenotypic presentation is or is not similar enough to 
a reported Mendelian condition then to prioritize the 
relevant genes. Coupling this with the reality that all 
human genomes carry many deleterious mutations, in 
many different genes, it is clear that all human genomes 

Box 1 | Frameworks for large-scale next-generation sequencing variant analyses

Any adopted framework will make various trade-offs that 

should be carefully considered. The diagram shows the 

approximate relative positions of four possible approaches 

within the context of two typical trade-offs: query  

speed versus required data storage (horizontal axis);  

and flexible and complete data access versus ease of 

implementation and maintenance (vertical axis). 

The most flexible and complete approach is to 

implement a relational database using an industry 

platform (for example, MySQL) to incorporate all 

coverage data, quality metrics, variant calls and variant 

annotations of interest. A relational database presents 

information in relations (tables) that are themselves 

collections of non-redundant objects (rows) that have the 

same attributes (columns). Each table has an attribute  

or a set of attributes (primary key), the values of which 

uniquely define each row, and every table shares at least one attribute with another table in a one-to-one, one-to-many 

or many-to-many relationship. The ability to retrieve related data through these relationships forms the basis of the term 

‘relational database’. The database can be coupled with an abstracting front-end application that permits complex data 

queries without requiring detailed knowledge of the underlying data structure. This framework can be optimally 

configured to incorporate both fast queries and efficient disk usage but is adopted at a high cost of initial implementation 

difficulty and downstream maintenance. However, a relational database can be updated with additional genomes  

and novel annotations and enables a host of industry-tested third-party tools to be used for database maintenance and 

optimization. Finally, individual database instances can be optimally configured for certain tasks or specific studies by 

leveraging the replication capabilities of a master database to multiple slaves.

SVA is a suite of tools for annotating and visualizing sequence data80 that organizes all relevant data into an easily 

searchable format that is optimized for efficient data access. SVA is more tightly bound at the speedy side of the 

query-time–storage-space spectrum and shares many flexibility and completeness attributes with a relational database 

approach. However, SVA is not easily updated with additional samples or new annotations. The PLINK/SEQ approach 

maintains a library of VCF files, creates its own relational database behind the scenes and indexes the contained 

information for efficient querying without requiring much more disk space than storing the original VCF. PLINK/SEQ allows 

filtering on arbitrary quality metrics but provides no comprehensive solution for searches based on precise coverage data 

for samples without a genotype of interest, as it is not currently compatible with gVCF files. PLINK/SEQ can be operated 

either by fully loading VCFs, permitting faster searches or by indexing the VCF files on disk, sacrificing query time to use 

less disk space. The VCF search approach amounts to storing libraries of compressed VCF/gVCF files and using the 

available toolsets (VCFtools/gVCFtools) for querying the libraries. This approach is easier to implement than the others as 

the tools are available for download but sacrifices arbitrarily customizable queries and flexibility in how the samples are 

grouped among the individual or multi-called VCFs. This approach may also be substantially slower with analyses of many 

samples as the indexing has not been developed to the same degree as database indexes.

Flexible and complete data access

VCF searches

Faster 
queries

Smaller 
storage

PLINK/SEQ — 
indexed VCF

PLINK/SEQ — 
loaded VCF

Easy to implement and to maintain

Relational database

SVA
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have a high level of ‘narrative potential’ to provide com-
pelling but statistically poorly justified connections 
between mutations and phenotypes (BOX 2). Moreover, 
it must always be kept in mind that the strength of 
evidence supporting the pathogenicity of the variants 
presented in these databases dramatically varies. For 
example, in one resequencing study, it was determined 
that up to one-third of the mutations listed in the 
Human Gene Mutation Database (HGMD) as patho-
genic were in fact apparently benign owing to being 

common polymorphisms in the population, sequenc-
ing errors or owing to a lack of appropriate evidence 
required for pathogenicity37.

Information from multiple variants. We currently do 
not know the precise weights that should be given in the 
prior probabilities discussed above to incorporate them 
into appropriate formal statistical models, and there is a 
substantial risk that post hoc deployment of plausibil-
ity arguments based on genes or variants could lead to 
misinterpretation of association evidence. In addition, it 
is plausible that at least in some genes or pathways, there 
are multiple different mutations that each changes the 
risk of disease to a similar degree. For example, if a gene 
increases disease risk when its expression is reduced, 
all possible complete knockout mutations for the gene 
would be expected to have the same impact on risk. As 
such, deleterious variants are often rare, and it is diffi-
cult to detect association using single-variant analyses. 
In this setting, a better alternative is to collapse or to 
aggregate statistical information across qualifying muta-
tions within a functional unit (for example, a gene or 
pathway), resulting in a single gene-based or pathway-
based test. The simplest such approach is the burden 
test50,51. For a binary trait, the burden test compares 
frequencies of individuals carrying a damaging variant 
in a gene between cases and controls. For quantitative 
traits, most variations of the burden test can be regarded 
as a regression of phenotypic value on presence of any 
damaging mutation in a gene. The approaches can be 
generalized to pathways rather than to genes and to 
multiple types of genetic variants.

Several existing burden tests vary in the way that they 
take into account allele frequencies of individual variants 
and whether they take weighted combinations of vari-
ants based on external information52,53. One limitation 
of these approaches is that they assume that all variants 
act in the same direction with respect to disease risk. 
This assumption may not hold well for genes that carry 
both loss-of-function and gain-of-function mutations 
or that carry different kinds of gain-of-function muta-
tions; the assumption is further complicated if the unit 
of analysis is a pathway. Numerous tests have therefore 
been developed that relax the assumption that mutations 
all act in the same direction, including the C-alpha test54, 
the sequence kernel association test (SKAT)55 and the 
estimated regression coefficient test (EREC)56. Multiple 
reviews have summarized much of the work done on 
rare variant methodologies, including the effect of 
genetic architecture57–61.

Currently, however, the impact of incorporating dif-
ferent types of prior information into different types 
of tests has not been systematically evaluated either 
through simulation or by empirical means.

One attractive feature of these collapse or aggre-
gate approaches is that the number of tests is clarified 
before statistical assessment. Clearly, significance should 
account for all regions that are considered. For example, 
if genes are the unit of analysis — and for demonstra-
tive purposes we define the number of assessable genes 
as 20,000 — then the Bonferroni significance threshold 

Box 2 | Illustrating ‘narrative potential’ in a control genome

To illustrate the ‘narrative potential’ of a control genome, we analysed the sequence 

data from a female control12. We choose a filtering strategy favouring a reduction in 

false positives (Supplementary information S1 (box)). We restrict our analysis to 

protein-coding variants within CCDS transcripts81. We set ‘qualifying’ variants to be 

those with an alternative allele frequency ≤1% in the internal control population of 
sequences generated using the same sequencing machines, alignment, quality-control 

and variant-calling pipelines. Moreover, we compare the allele frequencies obtained 

here with allele frequencies from the ESP6500 European–American exome-sequenced 

representatives (allele frequencies are taken from the Exome Variant Server). We also 

adopt four algorithms to assign further ‘qualifying’ criteria in putative missense 

mutations: SIFT39, PolyPhen2 (REF. 40), GERP++82 and Blosum62 (REF. 83; Supplementary 

information S2 (box)). These represent examples of the algorithms that are available to 

assess ‘qualifying’ variant status and have been reviewed in detail elsewhere45. Here we 

select qualitative thresholds in these tools for illustrative purposes, although selection 

can differ on the basis of expected genetic model and ideally should be quantitatively 

assessed through a weighting system. Two resources for connecting mutations and 

genes to specific phenotypes were used in this illustration (namely, Online Mendelian 

Inheritance in Man (OMIM) and the Human Gene Mutation Database (HGMD)48).

We find that this control genome contains nine variants that are likely to be gene 

disrupting (that is, nonsense, splice acceptors or donor sites) that are rare in controls 

(allele frequency ≤1%), five of which are in genes that can be connected to specific 
phenotypes through OMIM or HGMD (Supplementary information S3 (table)). 

Moreover, we find 237 rare missense mutations (allele frequency ≤1%) in this genome,  
of which 86.5% are judged to be damaging by at least one of the four algorithms used. 
Moreover, 32.5% of these variants are in genes that can be connected to specific 
phenotypes through consideration of OMIM (Supplementary information S4 (table)) or 

HGMD. Thus, the potential to assign a disease-related narrative to these mutations is 

high in a single control sample.
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would be set at a value no higher than 0.05/20,000. 
However, as there are many different ways to define 
qualifying variants and weight by variant characteristics, 
it will also be important to ensure that alternatives are 
not explored in order to maximize significance, as the 
threshold of 0.05/20,000 would apply to only a single set 
of rules. It should also be recognized that smaller studies 
may suffer from deflation of P values because there are 
insufficient counts to generate low P values. In this case, 
more accurate correction for multiple testing can be 
achieved using permutation60.

Many methodological challenges, however, remain 
in implementing these prioritization approaches. For 
example, aggregate methods often focus on rare vari-
ants as those that are most likely to influence disease62,63. 
Because control populations used to determine allele 
frequencies (for example, the Exome Variant Server) 
are far from comprehensive in their ethnic background, 
population groups that are not well represented may be 
systemically more likely to show signals of spurious asso-
ciation. In addition, aggregate methods are particularly 
prone to sequencing artefacts, and we have little current 
guidance on how variations in sequence quality will 
influence how well aggregate signals will be replicated 
across studies.

Functional evaluation

Although certain classes of mutations and certain genes 
are more likely to cause particular phenotypes, the basic 
challenge remains that all genomes carry ‘narrative 
potential’ (BOX 2) in the sense that even genomes of ‘con-
trol’ individuals with no known diagnosis carry func-
tional mutations in many genes of known or suspected 
relevance to a broad range of different phenotypes12 
(BOX 2). We find that there is considerable potential to 
link variants found in a randomly selected ‘control’ indi-
vidual to different diseases (BOX 2) and phenotypes with 
plausible sounding arguments. Thus, such plausibility 
arguments are clearly never sufficient to link a variant to 
a phenotype, and other criteria are required. Delineation 
of the full range of functional studies that might follow 
the identification of a disease-causing mutation would 
span all of human biology and is evidently beyond the 
scope of this or any single review. Nonetheless, there are 
several general principles that functional programs dedi-
cated to elucidating the mechanism of disease causing 
mutations should consider (BOX 3).

The role of functional data. There are two very distinct 
ways in which functional work has been used in rela-
tion to human genetic studies. The first and most prob-
lematic is an attempt to ‘validate’ potential associations 
between identified variants and diseases. The second 
is to understand the biological basis of disease caused 
by variants that have been securely implicated in dis-
eases on the basis of the genetic work alone. In reality, 
these two applications of functional work in human 
genetic studies are too often blurred together, making 
it difficult to assess the overall strength of pathogenic-
ity claims. Although recognizing that there are specific 
settings in which functional evaluations may help to 

make the case for pathogenicity, in general our view 
is that the case for being pathogenic itself will depend 
on the genetic analyses, whereas functional work will 
help us to understand how the variant influences 
pathogenicity.

This perspective somewhat contradicts our earlier 
argument about making distinctions among variants 
in genetic association studies. Thus, we have argued 
that it is appropriate to make distinctions among, for 
example, substitutions that result in frameshift muta-
tions and those that do not, among variants that are 
rare in the population versus common, and so on. This 
seems justifiable, as we generally have much better data 
to distinguish types of variants (for example, nonsense 
mutations compared with those at least 5 kb from any 
exon) than we have for assessing the probability that a 
gene will influence phenotypes of interest. For example, 
before GWASs, there was a burgeoning literature in neu-
ropsychiatric genetics that primarily related common 
polymorphisms in ‘obvious’ candidate genes to both dis-
ease endophenotypes and cognitive traits65,66. However, 
the evidence supporting the suggested polymorphisms 
evaporated when they were interrogated in statistically 
more careful study designs67 and in GWASs68.

As sample sizes grow, we believe that entirely unbi-
ased discovery of mutations of large effect influencing 
any base in the human genome will become feasible. In 
such an entirely unbiased approach, no prior knowledge 
of the genome would need to be used, and moreover it 
would not be necessary to assume that different muta-
tions in the same gene would affect the same pheno-
type (or phenotypes) (BOX 4). Given that this approach 
would need to account for testing any of the 3 billion 
different sites in the human genome that could carry a 
causal mutation, sample sizes would have to consider-
able. Interestingly, we find that under a range of genetic 
architectures, the total sample size of controls is the most 
important factor.

Regardless of the viewpoint taken concerning the use 
of functional data to implicate variants in disease, best 
practice dictates that researchers should be clear about 
where the evidence for pathogenicity comes from, and 
whether it depends on the genetic data alone or whether 
it requires functional data. If it requires the functional 
data, then the specificity of the functional assay must 
be carefully justified, and in many settings, this may not 
currently be possible.

A role for computation in functional evaluation. 
Computation will have an enabling role in functional 
evaluation. For example, variants that have been char-
acterized on the basis of a number of functional assays 
will need to be quantitatively evaluated to determine 
whether and which characteristics are suggestive of 
pathogenicity. More specifically, multi-scale simula-
tions of specific human systems have been developed, 
such as IBM’s Cardioid project that seeks to build a 
full simulation of the human heart for investigating 
the impacts of mutations69 and drugs on heart func-
tion. Further development of this and of similar models 
for other systems will provide the platforms on which 
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genomics and functional data can be effectively inte-
grated. Other methods, such as the dynamic clamp, 
which creates ‘real-time’ biological–computer hybrid 
models, can be used to assess mutations in cardiac 
genes70, to facilitate direct translation of protein dys-
function into disease-relevant phenotypes71 and to 
assess drug safety72. Although there are well-known 
reasons for caution relating to the accuracy of such 
models of complex biological systems, there is increas-
ing optimism that useful models of many key processes 
are and will be possible73.

The role of animal models in functional assessment 

of variants. Models of genetic disorders from animal 
studies have provided unexpected insights into disease 
mechanisms and can give insights into mechanisms of 
clinical heterogeneity that are important for disease 
risk assessment and establishing mechanisms. In one 
recent example, a mouse model was used to show how 

a single mutation causes distinct clinical phenotypes 
under distinct genetic models. A comparison of the 
GABRG1 ion channel mutant (GABRG1(R43Q)) epi-
lepsy mouse model with the GABRG1 ion channel 
knockout (GABRG1(KO)) mouse showed that although 
both models shared one of the disease phenotypes, a 
dominant-negative interaction of the mutant protein 
must be proposed to account for additional pheno-
types74. The study also showed that only one phenotype  
was affected by genetic background. Similarly, a 
recent study in a mouse asthma model demonstrates 
that consideration of epistasis is vital for predict-
ing drug action and for selecting animal models to  
evaluate novel therapies75.

More generally, large-scale systematic analysis of bio-
logical epistasis can be undertaken in model organisms 
such as yeast, worms and flies to develop interaction net-
works for the identification of ‘disease modifiers’, which 
are genetic hubs that are functionally poised to affect 

Box 3 | Suggested workflows for functional evaluation of novel disease variants

Quality management and collaboration

Before initiating functional experiments, we recommend that standardization of laboratory procedures and 

informatics approaches be agreed on by participant groups. This would extend to standard informatics issues, such as 

selection of metadata and database design, data storage, access and security. These databases will link functional data 

on each variant with disease phenotype and provide a context in which novel variants with similar functional profiles 

can be interpreted.

Overall management and procedural issues must be finalized to maximize data quality and to reduce time and costs. 

For example, this may involve incorporating quality systems into the procedure — including standardization of protocols, 

replication policies, statistical analysis, performance management and reporting — as well as developing policies for 

publication, presentation, attribution and protection of intellectual property. An important consideration is the 

assignment of particular tasks and genes to qualified laboratories.

Provision of reagents and functional platforms

Core services that provide reagents for functional assays include DNA-cloning services for expression vectors of exonic 

variants or mini-genes for intronic variants and probes for transcript analysis, as well as services for the provision of 

antibodies, cell lines, statistics and data curation, and viral vectors for expression and knockdown. For assessment of gene 

agnostic properties, several technology platforms are available, such as: Biacore (GE Healthcare) and LabChip GXII 

(PerkinElmer) for protein analysis; droplet-based assays for studying protein–protein interactions84; and high-content 

screening platforms such as Operetta (PerkinElmer) and ImageXpress (Molecular Devices) for detecting morphology and 

compartmental expression in cells. Systems-biology workflows and platforms85 incorporate many computational tools to 

facilitate modelling of complex disorders that cross multiple temporal and spatial scales.

Functional assays

General. First-pass functional assays address questions at the molecular cellular scale that are relevant to broad range of 

protein classes, such as:

• Are there any changes in protein synthesis, folding and degradation?

• Is the protein trafficked to appropriate cellular compartments?

• Are protein–protein interactions changed by amino acid alterations, expression levels or trafficking changes?

Fortunately, these assessments can be viewed as almost entirely generic and in principle can be applied to any 

mutation in any gene. These assays are therefore, in principle, amenable to deployment in high-throughput platforms 

that would allow characterization of the hundreds to thousands of mutations that will be identified in every human 

gene in the years to come.

Specialized. At higher levels of organization, protein function can diverge, and highly specialized assays are needed. Ion 

channels, for example, constitute ~1% of the total human genome, yet they have been unequivocally implicated in more 
than 50 human genetic disorders86 and are grossly over-represented as drug targets, being the primary therapeutic mode 

of action for 13.4% of the some 1,200 currently known small-molecule drugs78. It is also sobering that of the potential 

more than 20,000 proteins in the human genome, fewer than 300 are validated drug targets78. An important 

consideration in devising workflows and advancing genes through functional programs is the ultimate ‘druggability’ of 

that target: some estimates suggest that only 5% of the genome will be druggable and disease-relevant87. Within this 

framework, ion channels are likely to remain an important protein family, and existing platforms that have been devised 

for drug discovery can be exploited for automated high-throughput analysis of variants in diseases such as epilepsy, in 

which the path to translation is clear.
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multiple traits76. Specific hypotheses of disease-relevant 
biological epistasis can then be modelled in mice to dis-
sect these pathways further with higher-order pheno-
typic features that are lacking in simpler model systems. 
These studies clearly show that there is no ‘one size fits 
all’ approach in animal modelling of human genetic 
disease, and multiple complementary approaches are 
needed to bridge the gap from genetic discovery to  
disease therapy.

Induced pluripotent cells and functional evaluation. 
Induced pluripotent stem cells (iPSCs) from patients 
with genetic disorders have the promise to deliver ‘dis-
eases in a dish’77. Although technical issues remain, 
such as creating homogeneous populations of cells 
with disease-relevant phenotypes, the ability to move 
from patient sample to model system is still enticing. 
Many assay platforms currently in use could be rap-
idly adapted for stem cells. For gene variant functional 
analysis and pharmacogenomics, iPSC-derived cardio-
myocyte platforms already exist that can readily char-
acterize well-validated predictors of cardiac efficacy 
and safety. One enticing aspect of these approaches is 
the fact that the effect of the mutation of interest can 

be assessed in both the correct genetic background (by 
comparing clones from the patient in which the site 
has and has not been ‘edited’ to match the wild-type 
allele) and in the standardized control background (by 
editing in the mutant allele in standardized and widely 
used control clones). Perhaps most importantly, for 
any diseases that have clear cellular phenotypes, high-
throughput screening systems can quickly be designed 
and implemented.

Functional variants and the control population. It 
is also necessary to acknowledge the importance of 
understanding the spectrum of functional change to be 
expected in the unaffected population. For example, how 
do some of the most commonly characterized functional 
effects of mutations depend on population minor allele 
frequency? How does the distribution of functional 
effects of variants from controls compare with disease 
cases, especially in the case of polygenic inheritance and/
or strong genetic interactions? Do functional effects in 
cases and controls overlap, and can the effects be sepa-
rated? First forays into this area should be followed 
by exhaustive analysis of a single gene class to provide 
proof of principle. Coupled with this, it is increasingly 
clear that there is a need for well-curated and univer-
sally available databases of the variants that are observed 
in patients with precisely defined phenotypes as well 
as databases of the distribution of variants in patients  
without any clinical diagnoses.

The relevance of functional information for therapies. 
Despite the investment of enormous resources by both 
public and private researchers, the number of targets 
being exploited in drug discovery campaigns is fairly 
stagnant78. Unfortunately, not all genes implicated 
in disease will prove to be ‘druggable’, and accurately 
predicting how drugs act on a gene or pathway will 
crucially depend on the functional effects of disease-
causing mutations. Thus, it is almost universally true 
that translating genomics discoveries into improved 
clinical outcomes will depend on a functional under-
standing of the effects of pathogenic variants that have 
been implicated in disease through genetic analysis. An 
important corollary is that some level of convergence of 
disease mechanisms across multiple individual genomes 
must be found, as the number of drugs that can and will 
be developed is limited.

Furthermore, it would be satisfying if all genetic 
diseases could be reversed by rescuing the molecular 
phenotype, but this is not always possible as irreversible 
changes can occur in utero and in early development 
before there has been an opportunity to intervene. Even 
with the best prognostic genomics tools, small-molecule 
and biological-based therapies cannot necessarily target 
the temporally and spatially sensitive dysfunction caused 
by a pathogenic variant. In such cases, a complete under-
standing of the disease mechanism and the properties of 
that disease state garnered from functional programs will 
provide the clues to novel treatments that exploit thera-
peutic nodes to affect disease progression in a range of 
different individual genomes.

Box 4 | Detecting association in the human genome without prior information

We investigated the viability of a site-based approach using standard power calculations, 

assuming that the α-level is given by the Bonferroni threshold (0.05 / 3 × 109 ≈ 2 × 10–11). 

Specifically, we assumed a prevalence of 1%, although we note that diseases with 
differing prevalence would result in similar results as long as the control sample excluded 

those with disease. We fixed the number of cases at 100 throughout. We assumed that a 

rare variant acted in a dominant fashion on disease risk. We allowed the frequency of this 

variant to vary and investigated the impact of the size of the control group on power. It is 

well known that a balanced design, in which the number of cases and controls are similar, 

gives the greatest power for a fixed number of samples (that is, both cases and controls). 

However, our analysis suggested that as the risk allele reduces in frequency, it pays to 

have a larger and larger control sample. We began by deriving a power formula for the 

hypothetical situation in which the control sample is infinite. The figure shows a given 

genetic model (with a relative risk of 10) for a range of rare risk allele frequencies. We 

computed not only the maximum power (infinite control group size) but also the size of 

control group necessary to achieve 99% of the maximum power available. From this 
figure, we can see that a control group with 100,000 samples will yield 80% power of 
detecting the risk variant down to an allele frequency of 4 × 10–3. The balanced design has 

no power throughout the presented risk allele frequency spectrum.
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Conclusion and future directions

In broad summary, we now know many of the strate-
gies that are relevant to the interpretation of sequenced 
genomes, including appropriate measures to control for 
the accuracy of sequence data, genetic and bioinformatic 
evidence that can help to provide prior distinctions among 
variants in probability of influencing disease, and func-
tional characterization of the variants in both in vivo and 
in vitro models. But, although interpretation of protein- 
coding parts of the genome is mature, interpreting other 
parts of the genome is much less so. In the single-exome 
snapshot (BOX 2), we solely focus on the CCDS-defined 
protein-coding regions of the genome. Currently, our 
ability to interrogate the genome as a whole for vari-
ants that influence phenotypes is limited owing to the 
potential number of variants in the genome and current 
sample sizes. Eventually, this will change. As noted above, 
well-powered screens for mutations of major effect any-
where in the genome will become possible as the num-
ber of control individuals with comprehensive genetic 
data increases (BOX 4). Moreover, increasing knowledge 
of what parts of the genome are important in regulating 
gene expression and how they do so79 will further facili-
tate our ability to interrogate the full human genome, as 
will the simultaneous analysis of multiple omic layers, 

most immediately the genome and the transcriptome. 
Unfortunately, for most of these classes of evidence, it 
will take time to develop appropriate statistical criteria for 
reaching firm conclusions about pathogenicity.

Perhaps the most general lesson of the considerations 
reviewed here is that arguments for pathogenicity should 
always be made in full awareness of the opportunity for 
both association and narrative potential that is inher-
ent in sequence data. If an observation of a particular 
kind of functional effect of a variant is used to argue 
for its pathogenicity, it is necessary to assess how com-
monly other variants in the genome produce similar 
functional effects. The considerations above make clear 
that a variant being in a class that looks suspicious (for 
example, rare and in silico predicted damaging) by itself 
can provide little evidence of pathogenicity, even if the 
judgment that the variant is deleterious in a population 
genetic sense is more secure. It is thus clear that a central 
challenge for the field is developing appropriate statisti-
cal criteria that incorporate disparate data types in the 
interpretation of sequenced genomes. An even more 
difficult challenge will be to develop sufficiently high-
throughput assays with supporting neuronal, animal and 
computational models to assess the biological effects of 
implicated variants.
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