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Meta-Analysis of Genetic Polymorphisms in
Granulomatosis With Polyangiitis (Wegener’s)
Reveals Shared Susceptibility Loci With Rheumatoid Arthritis
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Objective. To examine the association of previ-
ously identified autoimmune disease susceptibility loci
with granulomatosis with polyangiitis (Wegener’s)
(GPA), and to determine whether the genetic suscepti-
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bility profiles of other autoimmune diseases are associ-
ated with those of GPA.

Methods. Genetic data from 2 cohorts were meta-
analyzed. Genotypes for 168 previously identified single-
nucleotide polymorphisms (SNPs) associated with sus-
ceptibility to different autoimmune diseases were
ascertained in a total of 880 patients with GPA and
1,969 control subjects of European descent. Single-
marker associations were identified using additive lo-
gistic regression models. Associations of multiple SNPs
with GPA were assessed using genetic risk scores based
on susceptibility loci for Crohn’s disease, type 1 diabe-
tes, systemic lupus erythematosus, rheumatoid arthritis
(RA), celiac disease, and ulcerative colitis. Adjustment
for population substructure was performed in all ana-
lyses, using ancestry-informative markers and principal
components analysis.

Results. Genetic polymorphisms in CTLA4 were
significantly associated with GPA in the single-marker
meta-analysis (odds ratio [OR] 0.79, 95% confidence
interval [95% CI] 0.70-0.89, P = 9.8 x 10~°). The
genetic risk score for RA susceptibility markers was
significantly associated with GPA (OR 1.05 per 1-unit
increase in genetic risk score, 95% CI 1.02-1.08, P =
5.1 x 1079).

Conclusion. RA and GPA may arise from a simi-
lar genetic predisposition. Aside from CTLA4, other loci
previously found to be associated with common auto-
immune diseases were not statistically significantly as-
sociated with GPA in this study.

Granulomatosis with polyangiitis (Wegener’s)
(GPA) is a severe, multisystem inflammatory disease
with a prevalence of ~1 in 10,000-40,000 persons of
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European ancestry (1). GPA is thought to be an auto-
immune disease because it is highly associated with
autoantibodies to proteinase 3, which are rare in the
general population (2-4). It is unclear to what extent
genetics contribute to the risk of GPA. Results of family
studies have suggested a slight increase in risk (esti-
mated at 1.5- to 3-fold) among close relatives, but this
estimate is imprecise due to the rarity of the disease
(5,6).

Two genetic associations with GPA are well-
established. One is in the HLA region, specifically
HLA-DPBI1 (7), and this finding provides further sup-
port for consideration of GPA as fundamentally an
autoimmune disease. The other is a null allele in ;-
antitrypsin (41AT, or SERPINA) (8-10). However, be-
cause these null alleles are uncommon, haploinsuffi-
ciency of AIAT accounts for only ~7% of cases of GPA
(8). Many other polymorphisms have been investigated
on the basis of existing knowledge of the role of the
associated gene in immunity, but only 2 associations (in
CD226 and FCGR3B) have been confirmed in >1 cohort
(11,12).

The contribution of many common genetic vari-
ants to the risk of more common autoimmune diseases,
such as rheumatoid arthritis (RA), type 1 diabetes, and
inflammatory bowel disease, has been established
through genome-wide association studies (GWAS) and
meta-analyses of the data from these studies (13-27).
Some polymorphisms appear to confer risk in multiple
autoimmune diseases. Although candidate gene studies
in GPA have often investigated genes related to immu-
nity, they have usually examined hypotheses about the
functions of particular genes of interest, rather than
focusing on polymorphisms that have already been
shown to predispose to other diseases, with few excep-
tions (28,29).

Support for pursuing the hypothesis that genes
that predispose to other autoimmune diseases are also
risk alleles for GPA comes from 2 sources. First, studies
of familial associations between GPA and other auto-
immune diseases have concluded that first-degree rela-
tives of individuals with GPA have a modest increase in
the risk of common autoimmune diseases in general
(relative risk 1.32), and of RA, multiple sclerosis (MS),
psoriatic arthritis, and Sjogren’s syndrome in particular
(6,30). Calculated associations with lupus, inflammatory
bowel disease, and ankylosing spondylitis (AS) were of
similar magnitude but did not reach statistical signifi-
cance, since these diseases were less common in the
cohort (6). Second, several polymorphisms that have
each been associated with the risk of GPA in 1 or 2
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cohorts have also been associated with other auto-
immune diseases (11,12,28,29,31,32).

We performed a candidate gene study in GPA, in
which we assessed 168 single-nucleotide polymorphisms
(SNPs) found to be associated with =1 autoimmune
disease. Our goals were 1) to identity individual SNPs
associated with GPA using a case—control study design
in 2 cohorts, and 2) to test associations of multiple SNPs
in models of genetic risk (using the genetic risk score
[GRS]), which were developed to investigate individual
autoimmune diseases for their ability to predict an
increased risk of GPA, regardless of the statistical
significance of the component SNPs. This study was
more rigorous than most candidate gene studies, be-
cause we utilized ancestry-informative markers (AIMs)
and principal components analysis to control for popu-
lation stratification.

PATIENTS AND METHODS

Study subjects. Data from 2 cohorts were analyzed
independently and then combined for study in a meta-analysis.
All patients were enrolled using protocols approved by the
Institutional Review/Ethics Boards at the participating sites.

In the first cohort, 431 patients with GPA and 391
healthy control subjects who were enrolled in the Wegener’s
Granulomatosis Genetics Repository (WGGER) (8) and who
were of self-identified European descent were genotyped.
Subjects were recruited at 8 US centers between 2001 and
2005, and clinical data from the patients were recorded using a
standardized form. These data were reviewed to ensure that all
GPA cases met the American College of Rheumatology
(ACR) 1990 classification criteria for GPA (33). Controls were
individuals who were not related to the patients and who did
not have a personal or family history of autoimmune inflam-
matory diseases. Demographic data collected from the case
and control groups included age, sex, and race/ethnicity. In this
sample, 47% of the patients with GPA and 60% of the control
subjects were female, and the mean age was 53.1 years (range
18-87 years) among cases and 49.5 years (range 18-85 years)
among controls.

To increase the statistical power of this initial cohort,
82 individuals of northern and western European ancestry,
whose genotypes are recorded in the Centre d’Etude du
Polymorphisme Humain (CEPH) data collection from the
International HapMap Project (http://www.hapmap.org),
were included as additional controls in this study. Thus, the
total sample size for this cohort was 431 GPA cases and 473
controls.

A second cohort of 464 patients with GPA was assem-
bled in Toronto between 2001 and 2010 from multiple sites
(50% from the US, 40% from Canada, 10% from Europe, and
<1% from other locations), through physician contacts and
online advertisement. Information about symptoms, organ
involvement, and antineutrophil cytoplasmic antibody levels
was garnered from physician records, and all cases met the
1990 modified ACR criteria for GPA. The mean age of the
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patients in this cohort was 52.8 years (range 1485 years), and
55% of the patients were female.

Controls for the Toronto cohort (n = 1,503) were
derived from 2 sources: 380 volunteers from the Toronto
metropolitan area (mean age 40 years, range 23-91 years, 82%
female), and 1,123 healthy persons recruited into the M. D.
Anderson Cancer Center Lung Cancer Study (ongoing since
1999) from the Kelsey-Seibold Clinics in the Houston metro-
politan area (mean age 61.1 years, 43% female). None of these
control subjects had a history of autoimmune disease, and all
cases and controls were of European descent, as ascertained by
self-report.

SNP selection. A custom set of 384 SNPs, including 192
associated with autoimmune diseases and 192 AIMs (34-36),
was chosen for genotyping all subjects in the WGGER cohort.
All autoimmune disease—associated SNPs were outside of the
HLA region. After application of quality control filters and
imputation of SNPs not determined in the Toronto cohort (as
detailed below), 168 SNPs associated with autoimmune dis-
eases remained for analysis (for a complete list, see Supple-
mentary Table 1, available on the Arthritis & Rheumatism web
site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)
1529-0131). These included 58 SNPs associated with Crohn’s
disease (13,14,23,27,37,38), 32 associated with type 1 diabetes
(15,16,39-42), 23 associated with systemic lupus erythemato-
sus (SLE) (17-21,43-47), 24 associated with RA (22,36,48-50),
12 associated with ulcerative colitis (UC) (23-25,27,38,51), 8
associated with psoriasis (26,52), 15 associated with celiac
disease (53-55), 2 associated with MS (56-58), 2 associated
with AS (59), and 1 associated with primary biliary cirrhosis
(60). Some of these SNPs have been found to be associated
with more than 1 of the listed diseases, which is the reason
that the numbers of SNPs associated with individual diseases
add up to >168. The AIMs genotyped in the subjects in the
WGGER cohort (see Supplementary Table 1, on the Arthritis
& Rheumatism web site at http://onlinelibrary.wiley.com/
journal/10.1002/(ISSN)1529-0131) are informative for both
continental and intra-European ancestry.

Genotyping, data quality filters, and imputation ana-
lyses. Genotyping of the WGGER samples was performed at
the Broad Institute (Cambridge, MA) using the BeadXpress
platform from Illumina. Genotypes of the autoimmunity-
associated SNPs in the Toronto cohort were determined using
data from a GWAS that had been performed previously
(K. Siminovitch KA, et al: unpublished observations). Geno-
types were determined using the Illumina HumanCNV370-
quad version 3 platform (464 cases and 380 controls) and the
HumanHap370 BeadChip (1,123 controls).

The following data quality filters were applied sepa-
rately to the WGGER and Toronto cohorts. SNPs were
removed from analysis if they had >10% missing genotypes,
a minor allele frequency of <1%, or evidence of deviation
from Hardy-Weinberg equilibrium in the controls (P <
0.0001). Subjects were removed from the analysis if their
overall genotyping rate was <90% or if population outliers
were observed on principal components analysis (defined
as values >6 SD from the mean for any of the first 10 prin-
cipal components). Duplicate samples were identified using
identity-by-state measures, calculated using Plink software
(http://pngu.mgh.harvard.edu/purcell/plink/) version 1.07 (61),
in which all of the samples in this study were assessed using the
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218 genotyped SNPs that overlapped between the WGGER
and Toronto cohorts. Individuals who were enrolled in both
studies were retained in the WGGER cohort.

Ten SNPs were removed from the WGGER cohort for
failing the data quality filters described above. Thus, 374 SNPs
(187 autoimmunity-associated and 187 AIMs) were used in
subsequent steps. Eleven samples (7 cases and 4 controls) were
excluded on the basis of poor genotyping rates, leaving 424
cases and 469 controls whose genotyped SNPs had an average
call rate of 99.7%.

In the Toronto cohort, 92 of the 187 candidate SNPs
were successfully genotyped. Five duplicate GPA cases were
identified (pi_hat ~ 1.0) and 6 subjects whose data were
genetic outliers on principal components analysis were re-
moved from the Toronto cohort, leaving 456 cases and 1,500
controls. The remaining 95 candidate SNPs not genotyped in
the Toronto cohort were imputed using Impute version 2
(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) (62),
utilizing, as reference, the 283 European samples from phase I
of the 1000 Genomes Project (sequence index 2010.08.04).
After filtering the data according to an info score of >0.80,
76 of the 95 SNPs were successfully imputed. Thus, 168
autoimmunity-associated SNPs were identified for further
assessment in the final analysis.

Analysis of population substructure. Principal compo-
nents analysis was performed in the WGGER cohort using the
EigenStrat program (63) (http://genepath.med.harvard.edu/
~reich/Software.htm) and using data from all 187 AIMs. No
genetic outliers were identified. Visualization of the first 2
principal components showed that all 424 cases and 387
control subjects who self-identified as being of non-Hispanic
European descent were clustered in the same group as the 82
European subjects included in the study from the CEPH/
HapMap phase 3 database.

Principal components analysis was also used to assess
for population substructure for the Toronto cohort. After
removal of SNPs in regions with extensive linkage disequili-
brium on chromosomes 5 (44-51.5 Mb), 6 (25-33.5 Mb), 8
(8-12 Mb), 11 (45-57 Mb), and 17 (40-43 Mb), all remaining
SNPs on the genome-wide genotyping platform were used to
calculate principal components using EigenStrat. Six cases
were removed as genetic outliers (defined as values >6 SD
from the mean of any of the first 10 principal components).

Association study and meta-analysis. For the WGGER
cohort and for candidate SNPs that had been genotyped in the
Toronto cohort, association of each SNP genotype with GPA
disease status was assessed separately in each cohort using
logistic regression, assuming additive genetic models. These
analyses were carried out using Plink version 1.07. The first 2
principal components specific to each cohort were included
in all logistic regression models to adjust for population sub-
structure. For SNPs that had been imputed in the Toronto co-
hort, associations with GPA were assessed using the score
method in SNPTest (version 2.2.0). For these analyses, prob-
abilistic genotypes were utilized, assuming additive genetic
models, in logistic regression analyses, which also included
the first 2 principal components to adjust for population sub-
structure.

To produce an overall estimate of the association of
each marker with GPA in the 2 cohorts, a meta-analysis
combining the results for each SNP was performed using Plink
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version 1.07. The results from fixed-effects models are re-
ported, but random-effects models were also generated and
produced identical results for the 10 SNPs with the lowest
P values. No significant heterogeneity in the meta-analysis
results was observed.

P values were adjusted for the false discovery rate
(FDR) (64), based on the ranked P values of 168 simultaneous
tests. Adjusted P values less than 0.05 were interpreted as
statistically significant.

Calculation of the GRS. For each subject, separate
GRS scores for Crohn’s disease (57 SNPs), type 1 diabetes (32
SNPs), SLE (22 SNPs), RA (23 SNPs), celiac disease (14
SNPs), and UC (11 SNPs) were calculated using the SNPs that
were genotyped or imputed in this study and that have been
previously associated with those diseases (see details in Sup-
plementary Table 1, available on the Arthritis & Rheumatism
web site at http://onlinelibrary.wiley.com/journal/10.1002/
(ISSN)1529-0131). For each disease-specific GRS, the num-
bers of risk alleles present in each GPA case or control were
added in an unweighted manner, and homozygous risk alleles
were counted twice. Each missing genotype was replaced with
the mean risk allele frequency for a given SNP among cases or
controls. Probabilistic genotypes were utilized for imputed
SNPs. For SNPs in linkage disequilibrium that showed an
association with the same disease (e.g., rs2070197 and
rs10488631 in IRF5, which are both associated with SLE; 1> =
0.93), the SNP with the most statistically significant association
with GPA was retained in the GRS calculations.

The distributions of GRS scores among cases and
controls were compared by logistic regression, with the
disease-specific GRS score as a continuous variable and the
first 2 principal components as the predictor variables, and
case/control status as the outcome variable. The WGGER and
Toronto cohorts were first analyzed separately and then com-
bined in the meta-analysis. Fixed-effects and random-effects
models yielded identical results. All GRS analyses were per-
formed using Stata statistical software (release 9.0).

RESULTS

Autoimmunity-associated SNPs in GPA. After
implementing data quality measures, 168 SNPs in at
least 141 candidate genes (see Supplementary Table 1,
available on the Arthritis & Rheumatism web site at
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)
1529-0131) were studied in a total of 880 GPA cases and
1,969 controls of European descent in the WGGER
cohort (424 cases and 469 controls) and Toronto cohort
(456 cases and 1,500 controls).

In the WGGER cohort, 12 markers showed
nominal evidence of association with GPA (Padjusted <
0.05), but none of the associations was significant after
correction for the FDR. The most statistically signifi-
cant association was with rs11618775 (odds ratio [OR]
1.34, 95% confidence interval [95% CI] 1.08-1.66,
Pynadjustea = 0.0073), which does not have a known gene

within 100 kb upstream or downstream. This SNP was
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poorly imputed in the Toronto cohort, and thus was not
included in further analyses.

Of the 168 SNPs analyzed in the Toronto cohort,
11 SNPs showed nominal evidence of association with
GPA (Pypadjustea < 0.05). An imputed SNP, rs3087243
(in CTLA4), was the most strongly associated with GPA
(OR 0.78, 95% CI 0.67-0.91, P pagjustea = 0-0014). The
most strongly associated genotyped SNP was 152476601
in PTPN22 (OR 1.41, 95% CI 1.12-1.79, P = 0.0042).
Neither marker was statistically significantly associated
with GPA after correction for the FDR.

Our meta-analysis yielded a statistically signifi-
cant association with GPA for rs3087243 in CTLA4, with
15 additional SNPs showing unadjusted P values of less
than 0.05 (Table 1). Three additional SNPs, in CTLA4,
PTPN22, and CD40, narrowly missed the prespecified
cutoff for a significant association, and the next 6 SNPs,
in order of significance, were notable for involving pairs
of SNPs in moderate-to-strong linkage disequilibrium in
3 regions (in or near PARK7, IL27, or NKX2-3).

Disease-specific GRS associations with GPA. As
shown in Table 2, the GRS score derived for suscepti-
bility loci in RA was slightly, but significantly, higher in
GPA patients than in controls in both the WGGER and
Toronto cohorts individually and in the meta-analysis
(OR 1.05 per 1-unit increase in GRS, 95% CI 1.02-1.08,
P = 5.1 X 107°). Having a GRS score for RA that was
higher than the median was associated with 37% greater
odds of having GPA when compared to having a GRS
score for RA that was below the median (OR 1.37, 95%
CI 1.16-1.62, P = 2.6 X 10~ °). After the 3 top-ranked
SNPs (in CTLA4 and PTPN22, all of which are associ-
ated with RA) were excluded from the study, the GRS
scores for RA susceptibility loci remained slightly higher
in GPA cases than in controls (meta-analysis OR per
1-unit increase in GRS 1.04, 95% CI 1.01-1.07, P =
0.017), indicating that these 2 genes did not account
completely for the GRS result.

GRS scores derived for type 1 diabetes were
higher in GPA cases than in controls in the Toronto
cohort, but not in the WGGER cohort. Given the
substantial heterogeneity of the findings from patients
with type 1 diabetes, a meta-analysis of these data was
not considered appropriate. Therefore, analyses of the
type 1 diabetes—specific GRS scores were inconclusive.

GRS scores derived for celiac disease, Crohn’s
disease, SLE, and UC did not differ significantly be-
tween either the GPA case cohort or control cohort
separately, and also did not differ by meta-analysis.
Moreover, GRS scores for smaller numbers of risk
SNPs (n = 2-8) associated with AS, MS, or psoriasis did
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Table 2. Genetic risk scores (GRS) derived from different autoimmune diseases in patients with granulomatosis with polyangiitis (Wegener’s)
(GPA) compared to controls*

Number of

risk alleles

GRS, mean = SD (range)*

Separate cohorts

Meta-analysis

Disease, cohort in GRSY GPA cases Controls OR (95% CI)§ P OR (95% CI)§ P

Celiac disease 14 1.02 (0.99-1.06) 0.20
WGGER 11.4 +2.23 (5-19) 11.3 = 2.42 (5-18) 1.02 (0.96-1.08) 0.54
Toronto 10.9 = 2.39 (4-21) 10.8 = 2.43 (4-19) 1.03 (0.98-1.07) 0.25

Crohn’s disease 57 1.00 (0.99-1.02) 0.63
WGGER 50.2 +4.74 (37-62)  50.2 = 4.84 (36-67)  1.00 (0.98-1.03) 0.83
Toronto 493 £ 457 (35-64)  49.2 = 4.71 (35-66) 1.01 (0.98-1.03) 0.66

RA 23 1.05(1.02-1.08) 5.1 X 107
WGGER 21.1 = 3.00 (13-31) 20.7 + 3.08 (12-32) 1.05 (1.01-1.10) 0.025
Toronto 21.0 = 2.89 (11-30) 20.6 + 3.06 (12-31) 1.05 (1.02-1.09) 0.005

SLE 22 1.03 (1.00-1.06) 0.07
WGGER 17.7 = 3.03 (9-26) 17.5 = 2.99 (9-28) 1.02 (0.98-1.07) 0.32
Toronto 17.0 = 2.83 (9-24) 16.7 + 2.86 (8-26) 1.03 (0.99-1.07) 0.11

Type 1 diabetes 32 ND ND
WGGER 312 £355(23-41)  31.2 = 3.84 (22-44) 1.00 (0.97-1.04) 0.95
Toronto 29.4 +354(19-39) 285 =3.52(18-41)  1.07(1.04-1.11)  <0.001

ucC 11 1.00 (0.96-1.04) 0.95
WGGER 11.4 £ 221 (5-17) 11.4 = 2.15 (6-18) 0.98 (0.93-1.06) 0.85
Toronto 11.4 +2.21 (5-19) 11.4 = 2.20 (4-20) 1.00 (0.96-1.06) 0.94

* GRS scores were calculated separately for each listed disease. ND = not determined (see Table 1 for other definitions).
T For the disease-specific GRS scores, the number of risk alleles within each independent single-nucleotide polymorphism found in GPA cases and
controls was added in an unweighted manner; the maximum possible GRS score is twice this number, since homozygous risk alleles are counted

twice.

£ GRS scores were calculated among 424 cases and 469 controls (including Centre d’Etude du Polymorphisme Humain/HapMap controls) in the
WGGER cohort and 456 cases and 1,500 controls in the Toronto cohort.
§ ORs indicate the increase in odds of having GPA associated with a 1-unit increase in the GRS, as determined by logistic regression, with inclusion

of the first 2 principal components as independent variables.

not differ significantly between the cohorts or by meta-
analysis (results not shown).

Analysis of the distribution of ORs for all risk
alleles used in the GRS score calculations did not pro-
vide any additional evidence of skewing of autoimmunity-
associated SNPs toward an association with GPA. The
mean OR of 1.01 (SD 0.09) for all risk alleles was not
significantly different from the null distribution.

DISCUSSION

In this study, one of the largest genetic studies of
GPA to date, we investigated the comparability of
genetic risk factors for GPA with those for other auto-
immune diseases by examining single-marker associa-
tions as well as composite GRS scores of previously
identified autoimmune disease susceptibility loci.

In single-marker analyses, we confirmed an asso-
ciation of GPA with genetic variation in CTLA4. The 2
SNPs in this gene found to be associated with GPA in
this study, rs3087243 and rs231735, have been previously
associated with RA and type 1 diabetes (39,49,65). SNP
rs3087243 does not appear to be significantly linked to
previously identified GPA-associated CTLA4 polymor-

phisms (rs5742909 [—319C/T] or rs231775 [+49A/G];
1r* < 0.1), but rs231735 has been shown to have moderate
linkage with rs231775 (r* = 0.6) (29,66,67). These find-
ings suggest that CTLA4 may harbor multiple genetic
variants contributing to disease risk. SNP rs3087243 has
been suggested to influence CTLA4 messenger RNA
stability, since it is located ~300 bp downstream from
the major 3’ poly(A) tail, while rs231735 is located
~40 kb upstream of CTLA4 and does not have a known
functional effect.

The PTPN22 polymorphism that showed some
evidence of association in this study, rs2476601, has
been previously found to be associated with GPA (28)
and with multiple other autoimmune diseases (13,15,21,
65,68). This nonsynonymous polymorphism induces an
amino acid change from arginine to tryptophan at codon
620, and is thought to increase its degradation, leading
to lymphocyte hyperresponsiveness (69).

Our findings also suggest that GPA and RA share
a common genetic background, which was not observed
for Crohn’s disease, SLE, type 1 diabetes, or UC. This
finding is supported by the findings from a previous
epidemiologic study showing an increased frequency of
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RA among offspring of patients with GPA (30). This
finding is not intuitive, since the pulmonary and renal
manifestations of GPA are not commonly observed in
RA, and inflammatory arthritis, the hallmark of RA, is
not present in all patients with GPA and is rarely
destructive. Having a similar genetic background implies
that the 2 diseases may share similar pathogenic mech-
anisms, and the shared association with alleles in CTLA4
and PTPN22 suggests that this mechanism involves the
threshold for activation or deactivation of autoreactive
T cells.

The major strength of this analysis is the rela-
tively large sample size represented by the meta-analysis,
when compared to that in other candidate gene studies
for GPA, which improved the statistical power to test a
relatively large number of candidate genes. However,
this study still had limited power to detect associations
with modest effect sizes, and thus there may be addi-
tional associations that have not been identified. An-
other strength of our study is that careful adjustment for
population stratification was performed, which is not
always accounted for in candidate gene studies. Finally,
not all of the associated loci for these autoimmune
diseases were genotyped. Therefore, there may be other
loci that are shared between GPA and SLE, type 1
diabetes, Crohn’s disease, and/or UC, and the genetic
background of these diseases may be more similar to
that of GPA than has been demonstrated in the present
study.

Further delineation of the genetic contribution to
risk of GPA will likely require a combination of GWAS
results and an ongoing hypothesis-driven search for rare
variants (such as null alleles in AIAT/SERPINA) that
would be missed by such screens. A prediction that may
be derived from the current study might be that outside
of HLA-DPBI1, CTLA4, and perhaps a few other poly-
morphisms associated with multiple autoimmune dis-
eases, most genes found to predispose to GPA will
reflect the unique pathophysiology of this disease, rather
than represent a more generic disruption of immune
homeostasis.
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