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ABSTRACT
Objectives Electronic health records (EHR) can allow for
the generation of large cohorts of individuals with given
diseases for clinical and genomic research. A rate-
limiting step is the development of electronic phenotype
selection algorithms to find such cohorts. This study
evaluated the portability of a published phenotype
algorithm to identify rheumatoid arthritis (RA) patients
from EHR records at three institutions with different EHR
systems.
Materials and Methods Physicians reviewed charts
from three institutions to identify patients with RA. Each
institution compiled attributes from various sources in
the EHR, including codified data and clinical narratives,
which were searched using one of two natural language
processing (NLP) systems. The performance of the
published model was compared with locally retrained
models.
Results Applying the previously published model from
Partners Healthcare to datasets from Northwestern and
Vanderbilt Universities, the area under the receiver
operating characteristic curve was found to be 92% for
Northwestern and 95% for Vanderbilt, compared with
97% at Partners. Retraining the model improved the
average sensitivity at a specificity of 97% to 72% from
the original 65%. Both the original logistic regression
models and locally retrained models were superior to
simple billing code count thresholds.
Discussion These results show that a previously
published algorithm for RA is portable to two external
hospitals using different EHR systems, different NLP
systems, and different target NLP vocabularies.
Retraining the algorithm primarily increased the
sensitivity at each site.
Conclusion Electronic phenotype algorithms allow rapid
identification of case populations in multiple sites with
little retraining.

Electronic health records (EHR) can improve
patient care and safety, reduce costs, and improve
guideline adherence. As EHR contain a longitudinal
record of patient disease, treatment, and outcomes,
EHR can also be a valuable tool for conducting
clinical and genomic research studies. Several recent
studies have demonstrated that genomic research
can be performed using subjects derived entirely
from EHR.1e5 Typically, research populations are
derived using ‘phenotype algorithms’ that combine
structured data with unstructured, narrative data

from the EHR. These algorithms often take signif-
icant human effort and time to develop, requiring
domain expertise, programming skills, and iterative
evaluation and development. Given the potentially
significant up-front development cost, it is of
interest to determine if such algorithms can be
easily ported to new institutions. The accuracy of
such phenotype algorithms applied across multiple
institutions with heterogeneous EHR has not been
broadly evaluated, although recent work in the
Electronic Medical Records and Genomics
(eMERGE) Network has demonstrated this for
some algorithms.5a 5b

Rheumatoid arthritis (RA) is the most common
autoimmune inflammatory arthritis worldwide and
affects 1.3 million adults in the USA.6 It has
previously been studied using phenotype algo-
rithms to identify EHR case cohorts.1 2 7 Early
genetic studies of EHR-linked cohorts of RA
patients have been replicated in known associa-
tions.1 2 Further development of collections of
EHR-linked cohorts for RA and other phenotypes
may enable not only enhanced understanding of
disease risks but also the investigation of outcomes
and treatment responses.
Previous phenotyping studies have demonstrated

some of the challenges to defining populations
retrospectively in the EHR. Liao et al7 developed an
electronic algorithm to identify RA patients using
logistic regression operating on billing codes, labo-
ratory and medication data, and natural language
processing (NLP) concepts, with a 94% positive
predictive value (PPV) and sensitivity of 63%. In
this study, we test the portability of a trained
algorithm developed at one institution to identify
RA status for patients at two separate institutions
using independent EHR systems. We demonstrate
that this algorithm can be successfully ported to
new institutions while maintaining a high PPV.
Algorithm portability could eliminate a significant
amount of redundant effort and allow the collec-
tion of larger, more homogenous disease cohorts
from multiple sites.

BACKGROUND AND SIGNIFICANCE
Although designed primarily for clinical care and
administrative purposes, EHR are becoming an
important tool for biomedical and genomic research.
These comprehensive records typically include
demographics, hospital admission and discharge
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notes, progress notes, outpatient clinical notes, medication
prescription records, radiology reports, laboratory data, and
billing information. These data are electronically stored generally
as either codified data or narrative (free text) data. These data can
then be extracted into ‘research data marts’ that allow for effi-
cient querying and analysis. Examples of such data marts include
the Partners data mart developed using informatics for inte-
grating biology and the bedside (i2b2) technology,8 the Mayo
Clinic Enterprise Data Trust,9 the Vanderbilt Synthetic Deriva-
tive,10 and the Northwestern Enterprise Data Warehouse.11 The
Vanderbilt Synthetic Derivative and the Northwestern Enterprise
Data Warehouse also allow for prospective de-identification.10 11

The early methods of phenotype identification focused
primarily on the use of the International Classification of
Diseases, version 9 CM (ICD-9) billing code data, but these
studies often found performance limitations for sensitivity and/
or PPV.12e14 NLP methods have been used to gather more
information about patients from their EHR. In Savova et al,15

NLP was shown to predict peripheral arterial disease status with
sensitivities between 73% and 96% and PPV between 63% and
99%. A study by Penz et al16 found that NLP methods were able
to identify 72% of central venous catheter placements, while
administrative data only identified less than 11% of those
patients. Friedlin et al17 found that NLP methods outperformed
ICD-9-based methods to identify pancreatic cancer patients; the
NLP methods achieved a PPV of 84% and a sensitivity of 87%,
while the ICD-9-based methods had a PPV of only 38%, with
a sensitivity of 95%.

This step is made possible by the steady development of NLP
methods over the past two decades, improving both capabilities
and accuracy. Currently, there is a variety of NLP tools available
to extract information from free text in EHR, including the
medical language extraction and encoding system,18 the
KnowledgeMap Concept Identifier (KMCI),19 the clinical Text
and Knowledge Extraction System (cTAKES),20 the Health
Information Text Extraction (HITEx) system,21 and MetaMap.22

These systems map medical terminology from free text to
controlled vocabularies, such as the unified medical language
system (UMLS). In addition to the identification of structured
concepts, the surrounding semantic context of those concepts
can be determined. Contextual features include negation (eg, ‘no
history of RA’), status (eg, ‘discussed RA treatment’),23 24 and
clinical note section location (eg, ‘family medical history of
RA’).25 Modern NLP systems can incorporate these features to
improve sensitivity and/or PPV of concept identification.26

The original RA algorithm of Liao et al7 used HITEx to find
relevant disease names, medications, and laboratory results.
This system employed a series of regular expressions to find
relevant concepts, as well as clinical note section identification
and concept negation detection. Use of HITEx in that study
was shown to improve sensitivity from 51% to 63% and
PPV from 88% to 94% over algorithms operating only on
structured data, resulting in the identification of approxi-
mately 25% more patients. The ability of higher level pheno-
type identification algorithms to integrate the results from
differing underlying NLP engines and concept dictionaries (ie,
UMLS vs custom regular expressions) has not previously been
studied.

There now exist large, independent biorepositories of genetic
information linked to EHR data that can be used to identify
genetic predictors of disease and treatment response. To create
larger patient pools to increase the power of studies, especially
for diseases with low prevalence, cohorts must be combined
across these biorepositories. Ongoing collaborations, such as the

pharmacogenomics research network27 and the electronic
medical records and genomics network,28 include multiple
institutions with EHR-linked biobanks that could utilize
portable phenotype algorithms to accelerate cohort generation
and scientific discovery.

METHODS
Patient selection
Vanderbilt University
A database was created using Vanderbilt University Medical
Center ’s Synthetic Derivative, a de-identified copy of the EHR
system.10 Synthetic Derivative records are linked to DNA
samples obtained from blood left over after routine clinical
testing. This biorepository, named BioVU, currently contains
over 129 000 samples as of August 2011. A full description of this
database has been published previously.10 From the first 10 000
adults accrued into BioVU (age $18 years), we selected all
subjects with at least one ICD-9 code for RA or related diseases
(714.*), excluding those with only the ICD-9 code for juvenile
rheumatoid arthritis (JRA; 714.3). We randomly selected 376 de-
identified records that were then reviewed by rheumatologists
(AEE, CSB) to confirm or reject the diagnosis of RA.

Northwestern University
A database was created using the Northwestern medical Enter-
prise Data Warehouse (EDW).11 The EDW is an integrated
repository of over 11 terabytes of clinical and biomedical
research data. It contains data on over 2.2 million patients,
derived primarily from Northwestern Memorial Hospital
(inpatient and outpatient records) and the Northwestern
Medical Faculty Foundation (outpatient records). At the time of
this study, the EDW contained 6124 patients with at least one
ICD-9 code for RA or related diseases (714.*), excluding those
who had died, were under the age of 18 years, or containing only
the JRA code (714.3). We randomly selected 400 patients from
among this set for review by a rheumatologist (AMM) to
confirm or reject the diagnosis of RA.

Partners Healthcare
As previously described,7 a database was created from the
Partners Healthcare EHR utilized by Brigham and Women’s
Hospital and Massachusetts General Hospital. The Partners
EHR contains approximately 4 million patients. We created
a de-identified database of all potential RA patients in the EHR
by selecting all patients with at least one 714.* ICD-9 code
(excluding 714.3) or those who had laboratory testing for
antibodies against cyclic citrullinated peptide, resulting in
a database of 29 432 subjects. Patients who had died or were
under 18 years were excluded. Five hundred subjects were
randomly selected from this database for medical record review
by rheumatologists (KPL, RoMP) to determine RA status. The
published RA classification algorithm applied in this paper was
developed on this training set based on RA status assigned by
the reviewing rheumatologists.7

Phenotype algorithm
The study was approved by the institutional review boards of
each institution. Each EHR system contained comprehensive
inpatient and outpatient records, including diagnosis, billing,
and procedural codes, physician text notes, discharge summaries,
laboratory test results, radiology reports, and both inpatient and
outpatient medication orders. At each site, initial selection
required patients to have at least one ICD-9 code for RA. This
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method greatly enriches the dataset for RA cases (because
population estimates would suggest that only 1e3% of
randomly selected individuals would have RA). However, the
sensitivity of this method is not known. To evaluate the sensi-
tivity of a single ICD-9 code for RA, two reviewers evaluated 50
randomly selected records that did not have an ICD-9 code for
RA but had a string match of ‘rheumatoid arthritis’ anywhere in
their record. These records were drawn from Vanderbilt’s
Synthetic Derivative.

The algorithm applied in this study was a published logistic
regression model developed by Liao et al.7 Twenty-one attributes
of the patients’ medical records were generated for RA and three
related autoimmune diseases that can mimic RA: JRA, psoriatic
arthritis, and systemic lupus erythematosus. These attributes
came from both codified medical data and narrative text,
represented in figure 1. The details of these attributes can be
found in supplementary table 1 (available online only). One
change was made to the attributes from their original publica-
tion. Instead of normalizing the ‘normalized ICD-9 RA’ attribute
by the number of ‘facts’ for that individual, we normalized the
RA code count using the individual’s total number of ICD-9
codes. Both are measures of the size of the health record for each
individual, but the total number of ICD-9 codes is more
universally available across institutions.

To adjust for the use of this alternative measure in the
published model, we fit a linear regression model to Partners data
with log(facts) as the outcome and log(total ICD-9 count) count
as the predictor. This model was used to estimated the number
of ‘facts’ for each patient from the total ICD-9 count for
Northwestern and Vanderbilt individuals when applying the
original model; the adjustment is presented in supplementary
table 1 (available online only).

Medications were identified differently across institutions. At
Partners and at Northwestern, medications were recorded in two
ways: from an outpatient order entry system and from NLP on
the patient’s inpatient and outpatient record using regular
expression matching clinical drug names (using HITEx). In
contrast, all of Vanderbilt’s medications were derived using an
NLP system called MedEx, which produced RxNorm-encoded
medications along with signature information.29 To ensure that
these NLP-derived mentions represented actual medication use,

we required each medication extract to contain a reference to
a dose, route, frequency, or strength, a heuristic that has worked
well in previous studies.30 31

Table 1 displays information about the three EHR included in
this study, and how each type of attribute was handled. Each
institution had a different EHR system. At Northwestern, the
same methods published at Partners were used to retrieve the
attributes, using the HITEx NLP system with a set of custom-
ized regular expression queries (see supplementary table 2,
available online only). At Vanderbilt, NLP was performed using
KMCI, which was applied without customization to identify
UMLS concepts with clinical note section tagging (using
SecTag25) and negation. The concepts were selected by hand
from a list automatically generated by finding related concepts
(using relationships such as parentechild found in the UMLS
MRREL file) around each of the key terms, such as ‘Rheumatoid
Arthritis’ (see supplementary table 3, available online only). The
selection of related concepts was done by the authors (RJC,
JCD) using a web-based interface developed as part of the
KnowledgeMap web application, which has been described
previously.32 The total time required to generate all concept
expansion sets is estimated to be approximately 30 min.

Analysis
As shown in figure 2, we applied the published logistic regression
model to the 21 attributes derived from the Northwestern and
Vanderbilt research data marts. To test whether local retraining
would improve model classification, we also retrained models
with the original attributes using the R statistical program.33

The glmnet package was used to train the models, and the
ROCR package was used for performance measurements and
receiver operating characteristic curves.34 35 We applied the
adaptive lasso, which selects the attributes that provide the
most benefit to the model while minimizing the total number of
attributes, to help avoid overfitting in these retrained logistic
regression models.36

We used fivefold cross-validation to measure the algorithm
performance for the within-site and combined-site analyses. The
dataset containing all three institutions was randomly split into
five groups, stratified by both site and disease status. This
method created one set of divisions that could be used for

Figure 1 Algorithm overview. EMR,
electronic medical record; ICD-9,
International Classification of Diseases,
version 9 CM; NLP, natural language
processing.
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training and testing the complete dataset, as well as for the
individual sites’ data. The across-site analyses was trained on the
complete set of one institution and tested on the complete set of
another institution.

Estimates for the area under the receiver operating charac-
teristic curve (AUC), PPV, and sensitivity were calculated using
the average across each fold of the cross-validation, when
applicable. When calculating sensitivity and PPV, we selected
a threshold value for the logistic regression model that yielded
a specificity of 97%, the same target specificity used by Liao
et al.7 The PPV is the rate of true positives in those classified as
positive in the algorithm, or (true positives)/(true positives +
false positives). The sensitivity is the rate of true positives
divided by all true cases, or (true positives)/(true positives +
false negatives). For the performance measures of the original
algorithm, we applied the previously trained model to the entire
dataset. In the case of Partners data, these values were deter-
mined using fivefold cross-validation.

Finally, we compared the logistic regression model with three
simple ICD-9 models, based on the ideas presented in an
administration database study.37 Each of the three methods used
a simple threshold assignment: if the patient had greater than or
equal to a given number of ICD-9 codes for RA, they were
considered RA positive. The first two used fixed thresholds of
one and three codes. The third used a floating threshold selected
to give a specificity of 97%.

RESULTS
Table 2 displays the demographic information for the cohorts in
each of the three institutions. The mean age for all six groups
was over 50 years. Vanderbilt had a higher percentage of cases
confirmed by chart review than Northwestern or Partners (49%
vs 26% and 19%, respectively). Importantly, at each site,
patients classified as true RA patients also had billing codes for
other, possibly overlapping, diseases such as systemic lupus
erythematosus, JRA, and psoriatic arthritis. The EHR follow-up
time, measured by the length of time from the first ICD-9 code
to the last, was similar between RA and non-RA individuals, but
it differed among the three institutions.
A review of 50 individuals with at least one ICD-9 code for RA

demonstrated that three individuals (6%) had some positive
evidence of RA. Two of those three individuals did not have any
corroborating evidence (eg, medications to treat RA), and thus
would not have been considered true cases in the gold standard.
Given the 49.2% prevalence in our enriched population and 617
records with at least one ICD-9 code, 304 of those individuals
would be expected to be RA positive. As 2e6% of records from
those missed by ICD-9 selection (n¼455) may be true positives,
we would expect to see between nine and 27 individuals missed
in this population. Therefore, the sensitivity of selecting patients
with one RA ICD-9 code would be between 92% and 97%.
The results from the algorithm analyses are shown in table 3.

The AUC of the logistic regression algorithm, using the original

Figure 2 Evaluation flowchart. EHR,
electronic health record; ICD-9,
International Classification of Diseases,
version 9 CM.

Table 1 Comparison of EHR and NLP systems used for algorithm

Implementations by institution

Partners, Boston, MA Northwestern, Chicago, IL Vanderbilt, Nashville, TN

EHR system Internally developed EpicCare (outpatient) and Cerner
PowerChart (inpatient)

Internally developed

No of patients 4 Million 2.2 Million 1.7 Million

Research EHR data Enterprise Data Warehouse Enterprise Data Warehouse De-identified image of EHR (Synthetic
Derivative)

Medication source Structured medication entries
(inpatient and outpatient) and
text queries

Structured outpatient medication entries
and inpatient and outpatient text queries

NLP (MedEx) for outpatient medications
and structured inpatient records

NLP system (disease concepts,
laboratory results, medications,
erosions)

HITEx HITEx KnowledgeMap concept identifier

NLP concept queries Customized RegEx queries Customized RegEx queries from Partners Generic UMLS concepts, derived from
KnowledgeMap web interface

EHR, electronic health record; NLP, natural language processing; RegEx, regular expressions; UMLS, unified medical language system.
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(published) b coefficients and an adjusted total ICD-9 count,
was 92% at Northwestern and 95% at Vanderbilt. For compar-
ison, performance for the original b coefficients using the data
with normalization by an unadjusted total ICD-9 count at
Northwestern was an AUC of 84%, sensitivity of 8%, and PPVof
47%, and at Vanderbilt it was an AUC of 96%, sensitivity of
53%, and PPV of 94%. In general, retraining the algorithm and
testing it at that institution yielded small performance
improvements. The performance of the algorithm when trained
and tested on Northwestern’s data had an AUC of 92%, which
was lower than the cross-validated AUC of 97% at both
Vanderbilt and Partners.

Table 3 shows that at a 97% specificity threshold, sensitivity
improved significantly when models trained using local institu-
tional data. Sensitivity ranged from 43% to 74% for models
trained using no local data, and from 65% to 82% in models
trained on local data, including the models trained on combined
data from all three sites.

Each of the algorithms performed better than an algorithm
requiring either one or three ICD-9 codes as a cut-off to deter-
mine RA cases when comparing PPV. The ICD-9 threshold
algorithms had a much higher sensitivity than the logistic
regression models. Using a floating ICD9 threshold chosen to
provide 97% specificity (table 3) yielded an average decrease
from the original model of 6% PPV and 22% sensitivity. The
number of ICD-9 codes needed to achieve 97% specificity ranged
from 29 to 53 across the three institutions. The average AUC
was 7% lower for the ICD-9 only algorithm.
Figure 3 presents the receiver operating characteristic curves

for each training and testing combination. Each panel contains
the test results for one institution, composed of four curves, one
for each training set. The within-site and combined-site curves
are drawn using the average true positive rate for each false
positive rate.
The betas from the logistic regression models, after using the

lasso method to select the most influential attributes, are shown

Table 2 Demographic and clinical information of study subjects

Partners (n[500) Northwestern (n[390) Vanderbilt (n[376)

RA Non-RA RA Non-RA RA Non-RA

Total 96 (19.2%) 404 (80.8%) 102 (26.2%) 288 (73.8%) 185 (49.2%) 191 (50.8%)

Age (years) 60.7615.9 56.0618.6 54.3614.8 58.9616.8 52.9613.1 56.2616.5

Women 74 (77.1%) 303 (75.0%) 83 (81.4%) 209 (72.6%) 148 (80.0%) 141 (73.8%)

Ethnicity

Caucasian 64 (66.7%) 286 (70.8%) 40 (39.2%) 120 (41.7%) 143 (77.3%) 155 (81.2%)

African American 3 (3.1%) 46 (11.4%) 18 (17.6%) 46 (16.0%) 14 (7.6%) 26 (13.6%)

Hispanic 2 (2.1%) 29 (7.2%) 6 (5.9%) 18 (6.3%) 1 (0.5%) 1 (0.5%)

Other 6 (6.3%) 7 (1.7%) 13 (12.7%) 44 (15.3%) 3 (1.6%) 2 (1.0%)

Unknown 21 (21.9%) 36 (8.9%) 25 (24.5%) 60 (20.8%) 24 (13.0%) 7 (3.7%)

Drugs

Anti-TNF use 50 (52.1%) 50 (12.4%) 67 (65.7%) 37 (12.8%) 88 (47.6%) 26 (13.6%)

Methotrexate 77 (80.2%) 105 (26.0%) 70 (68.6%) 61 (21.2%) 133 (71.9%) 63 (33.0%)

Codes

RA 93 (96.9%) 329 (81.4%) 102 (100.0%) 283 (98.3%) 185 (100.0%) 191 (100.0%)

SLE 2 (2.1%) 37 (9.2%) 3 (2.9%) 22 (7.6%) 14 (7.6%) 32 (16.8%)

JRA 7 (7.3%) 28 (6.9%) 1 (1.0%) 18 (6.3%) 6 (3.2%) 8 (4.2%)

PsA 2 (2.1%) 21 (5.2%) 0 (0.0%) 12 (4.2%) 6 (3.2%) 14 (7.3%)

EHR follow-up* 9.3866.77 10.1466.85 6.3064.69 6.0564.85 9.9764.06 9.0664.32

*Mean6SD in years, calculated as first ICD-9 code to last.
EHR, electronic health record; ICD-9, International Classification of Diseases, version 9 CM; JRA, juvenile rheumatoid arthritis; PsA, psoriatic arthritis; RA, rheumatoid arthritis; SLE, systemic
lupus erythematosus; TNF, tumour necrosis factor.

Table 3 Model performance

Algorithm

Testing set

Partners Northwestern Vanderbilt Average

PPV Sensitivity AUC PPV Sensitivity AUC PPV Sensitivity AUC PPV Sensitivity AUC

Published algorithm 88%* 79%* 97%* 87% 60% 92% 95% 57% 95% 90% 65% 95%

Retrained with

Northwestern 79% 47% 89% 87% 73% 92% 93% 43% 89% 86% 54% 90%

Vanderbilt 85% 74% 97% 82% 40% 88% 97% 81% 97% 88% 65% 94%

Combined 86% 71% 97% 86% 65% 91% 97% 82% 96% 90% 72% 95%

ICD-9 onlyy
$1 RA code 22% 97% N/A 26% 100% N/A 49% 100% N/A 33% 99% N/A

$3 RA code 55% 81% N/A 42% 87% N/A 73% 98% N/A 57% 89% N/A

97% Specificity 80% 49% 88% 80% 36% 84% 93% 43% 93% 84% 43% 88%

Code count for 97% specificity 53 29 48 43.3

The PPV and sensitivity values reported represent model performance with a specificity set at 97% for logistic regression models.
*These results are from a fivefold cross-validation on the Partners training set. The PPV and sensitivity as published in Liao et al was calculated from a separate Partners validation set (PPV
94%, sensitivity 63%).
yICD-9 cut-off used the count of 714.* codes, excluding codes for juvenile RA (714.3*).
AUC, area under the receiver operating characteristic curve; ICD-9, International Classification of Diseases, version 9 CM; PPV, positive predictive value; RA, rheumatoid arthritis.
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in supplementary table 1 (available online only). The betas and
attributes selected via lasso were different among each trained
model. However, the directions of the effects for similar classes
of features were similar among different models. All training and
testing combinations yielded AUC greater than 88%.

DISCUSSION
These results show that a previously published logistic regres-
sion method developed at one institution is portable to two
independent institutions that utilize different EHR systems,
different NLP systems, and different target NLP vocabularies.
These results are among the first to establish phenotype algo-
rithm portability across EHR systems. The use of existing,
validated phenotype algorithms in EHR linked to DNA biobanks
may enable the collection of large patient cohorts from multiple
institutions at a relatively low cost.

The published logistic regression model improved sensitivity
by 22% and PPV by 7% compared with the optimal ICD-9 count
threshold, demonstrating the added value of more complex
phenotyping algorithms. In a practical setting assuming 1000
patients with at least one RA ICD-9 code and a 25% prevalence,
the improved performance of the logistic regression model
would yield 72 additional true cases (163 vs 108, a 51% increase)
while also returning slightly fewer false positives (18 vs 20)
compared with using the 97% specificity ICD-9 count threshold.

The ICD-9 threshold algorithm results reflect the shortcom-
ings of relying on only billing data for phenotype identification.
This study shows that it is possible to achieve reasonable PPV
($80%) for RA using only ICD-9 codes, but the number of
ICD-9 codes required for optimal performance was much higher
than the number typically used (eg, three or more codes).
Moreover, the high thresholds of between 29 and 53 codes that
were required for optimal PPV performance resulted in low
sensitivity (eg, 36% at Northwestern). The variable perfor-
mance of the ICD-9 algorithm suggests broader issues in EHR
phenotype identification: individual physicians diagnose and
treat with their own biases, leading to different phenotypic
‘fingerprints’ in the EHR that may be unique to their institution
or their personal practice. More complex algorithms utilizing
more sources of information may offset some of this variability.
Indeed, other publications by the authors and others have
found such use of multimodal information critical to accurate
phenotyping.1 3 4 7 38 39

Application of the published logistic regression model required
some modifications to the original version. The original algo-
rithm called for using the total number of ‘facts’ (including
billing codes, notes, and NLP-derived attributes, among other
items) found in the EHR of each individual to normalize an
attribute. In the context of Partners Healthcare, this choice
allowed for the most comprehensive estimation of record size.
We found that the number of notes, visits, and NLP-derived
attributes varied among institutions based on non-patient
factors (eg, what NLP system was used, what constituted
a ‘note’ in the system, and the length of EHR data capture).
Therefore, when applying the model at other institutions, we
selected the total ICD-9 count as a normalizing metric repre-
senting record size. After this adjustment, performance of the
published model was consistent with the retrained models. The
change to ICD-9 normalization allowed this paper to present all
necessary elements of the algorithm in the supplementary tables
(available online only) in such a way that they could easily be
ported to other EHR using various NLP systems.
The individuals from Northwestern had on average a shorter

EHR follow-up time (approximately 6 years) than those indi-
viduals from Vanderbilt and Partners (approximately
9e10 years). This may explain the lower ICD-9 threshold found
at Northwestern, as the average individual in their cohort had
less interaction documented in the EHR. Given the demon-
strated importance of count data in the logistic regression
model, this could also impact performance by increasing the
overlap between long-standing RA patients and those shorter-
term misdiagnoses.
Although different NLP systems were used to extract disease

mentions at the different institutions, each method produced
similar results, supporting the portability of these algorithms
across NLP systems. Partners and Northwestern used regular
expressions developed specifically for this task, applied via
HITEx. Vanderbilt used lists of existing UMLS concepts that
represented these regular expressions, without any UMLS
synonym augmentation, found by means of a general purpose
NLP system, KMCI. Both systems support concept identifica-
tion, negation detection, and section tagging. Although the
recall and precision of the NLP engines themselves were not
rigorously evaluated, the similar overall performance suggests
that generic UMLS NLP systems may be sufficient for good
performance in at least some specific phenotype identification
tasks.

Figure 3 Receiver operating characteristic curves for each test set. The vertical line represents the 97% specificity cut-off used in this study. The test
performance at Partners, Northwestern, and Vanderbilt are found in (a), (b), and (c), respectively.
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Different medication retrieval systems were used by each site,
but each performed well. Partners and Northwestern used
codified data reported by their EHR in addition to NLP-derived
data from their patient records. Vanderbilt used NLP to retrieve
medications from both prescribing tools and patient records.
Using an approach that captures both codified and NLP infor-
mation from the EHR can improve performance by capturing
orders not entered electronically or from outside providers.
However, NLP methods are more likely to misinterpret a medi-
cation as being prescribed that may have been mentioned in
another context. One example of a misinterpretation would be
a medication listed under known allergies, and another is
a hypothetical statement, for example, ‘Discussed starting
methotrexate’ in a patient note. To minimize these false posi-
tives, we required the presence of dosing attributes in the
MedEx-derived medication mentions. It is interesting to note
that the medications attributes were not selected when the
model was retrained with Vanderbilt data. Although the lasso
coefficient reduction method did not select the medication
attributes, there was a significant univariate association
(p<10�9) between each drug category and RA status. Further
investigation revealed that the medication data were largely
collinear with the RA ICD-9 count.

The change in PPV for the Partners dataset from the Liao et al7

publication to the cross-validated model presented here is partly
due to the difference in the prevalence of RA between the
datasets. The validation set used in the Liao et al7 publication
was composed of algorithm-predicted RA patients, meaning the
prevalence was much higher than the training set used in this
study, which had a prevalence of 20%. The higher prevalence of
RA in the Vanderbilt dataset explains the higher PPV for that
institution. The AUC, representing error rates, is similar for the
logistic regression model at all three institutions as it is not
affected by disease prevalence. The simple ICD-9 algorithm had
an AUC at Vanderbilt of 93% compared with the average of 88%,
suggesting that billing practices at Vanderbilt may be an
underlying factor that improved performance at that site.

Several limitations caution interpretation of these results.
This study only evaluated one chronic disease. Other diseases
and findings may perform differently. Algorithms for identifying
other conditions may not be portable. Also, only a logistic
regression model was evaluated in this study. Other machine
learning methods, such as support vector machines or decision
trees, may not be as portable to other locations. Although we
attempted to standardize the review process across each of the
sites, individual site reviewing practices and categorizations may
have varied, leading to differences in how true positives were
classified. Finally, implementation of this class of algorithms
requires a vast research infrastructure to enable easy querying of
data and to support the necessary system intensive processes,
such as NLP and medication extraction tools; such research data
marts therefore require significant institutional investment.
Freely available tools, such as i2b2, and the future development
of commercial EHR systems may lower the barriers to the
development of research data warehouses.

CONCLUSION
This study showed that a previously published logistic regres-
sion model for RA identification, while not specifically designed
to be portable, was successfully implemented at two indepen-
dent medical centers using different EHR and NLP systems. This
work suggests that phenotype identification algorithms may be
more broadly portable, a model that could significantly speed the
reuse of EHR data for research as well as allow the linking of

EHR for large-scale collaborations. Future work should extend
this to evaluate different algorithmic methods, phenotypes
investigated, and local variability in clinical data including how
it is reported, stored and processed.

Contributors WKT, AMM, TC, EWK, SNM, RoMP, ANK, KPL and JCD designed the
study. Analysis was performed by RJC, WKT, TC, RMZ, JAP, TL, HX, VSG, RoMP, KPL,
and JCD. The literature search was performed by RJC, RoMP, KPL, AEE, and JCD.
AEE, AMM, CSB, EWK, RiMP, RoMP, ANK and KPL reviewed cases. Data retrieval
was performed by RJC, WKT, TC, RMZ, JAP, HX, RGP, VSG, SNM, KPL and JCD. Data
were interpreted by RJC, WKT, AEE, AMM, TC, CSB, EWK, EMR, RiMP, RoMP, ANK,
KPL and JCD. The initial document was drafted by RJC, WKT, KPL and JCD. The
figures were designed and created by RJC, WKT, AEE, TL, TC and JCD. The tables
were created by RJC, WKT, RoMP, KPL and JCD. Supplementary materials were
provided by TC, KL, RoMP, WKT and ANK. The guarantors of this study are RJC and
JCD. All authors revised the document and gave final approval for publication.

Funding The project was supported by U01-GM092691 of the Pharmacogenomics
Research Network (PGRN), as well as from award number U54-LM008748 from the
National Library of Medicine (NLM). The content is solely the responsibility of
the authors and does not necessarily represent the official views of the NLM or the
National Institutes of Health (NIH). RoMP was supported by grants from the NIH
(U01-GM092691, R01-AR057108, R01-AR056768, R01-AR059648), and holds
a career award for medical scientists from the Burroughs Wellcome Fund. KPL is
supported by K08-AR060257 from the NIH. TC was supported by grants from the NIH
(R01-GM079330) and NSF (DMS-0854970). JCD was also supported by
R01-LM010685 from the NLM. RJC was supported by 5T15LM007450-10 from the
NLM. The Partners Research Patient Data Repository is an integral part of the Partners
i2b2 platform. The Northwestern EDW was funded in part by a grant from the National
Center for Research Resources, UL1RR025741. BioVU and the Synthetic Derivative
were supported in part by Vanderbilt CTSA grant 1 UL1 RR024975 from the National
Center for Research Resources.

Competing interests None.

Ethics approval Ethics approval was provided by the institutional review board at
each institution.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. Ritchie MD, Denny JC, Crawford DC, et al. Robust replication of genotype-

phenotype associations across multiple diseases in an electronic medical record. Am
J Hum Genet 2010;86:560e72.

2. Kurreeman F, Liao K, Chibnik L, et al. Genetic basis of autoantibody positive and
negative rheumatoid arthritis risk in a multi-ethnic cohort derived from electronic
health records. Am J Hum Genet 2011;88:57e69.

3. Kullo IJ, Ding K, Jouni H, et al. A genome-wide association study of red blood cell
traits using the electronic medical record. PLoS ONE 2010;5:pii: e13011.

4. Denny JC, Ritchie MD, Crawford DC, et al. Identification of genomic predictors of
atrioventricular conduction: using electronic medical records as a tool for genome
science. Circulation 2010;122:2016e21.

5. Kohane IS. Using electronic health records to drive discovery in disease genomics.
Nat Rev Genet 2011;12:417e28.

5a. Denny JC, Crawford DC, Ritchie MD, et al. Variants Near FOXE1 Are Associated
with Hypothyroidism and Other Thyroid Conditions: Using Electronic Medical
Records for Genome- and Phenome-wide Studies. Am J Hum Genet
2011;89:529e542.

5b. Kho AN, Hayes MG, Rasmussen-Torvik L, et al. Use of diverse electronic medical
record systems to identify genetic risk for type 2 diabetes within a genome-wide
association study. J Am Med Inform Assoc 2012;19:212e8.

6. Helmick CG, Felson DT, Lawrence RC, et al. Estimates of the prevalence of arthritis
and other rheumatic conditions in the United States. Part I. Arthritis Rheum
2008;58:15e25.

7. Liao KP, Cai T, Gainer V, et al. Electronic medical records for discovery research in
rheumatoid arthritis. Arthritis Care Res (Hoboken) 2010;62:1120e7.

8. Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond with
informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc
2010;17:124e30.

9. Chute CG, Beck SA, Fisk TB, et al. The Enterprise Data Trust at Mayo Clinic:
a semantically integrated warehouse of biomedical data. J Am Med Inform Assoc
2010;17:131e5.

10. Roden DM, Pulley JM, Basford MA, et al. Development of a large-scale de-identified
DNA biobank to enable personalized medicine. Clin Pharmacol Ther 2008;
84:362e9.

11. EDW Northwestern Medical Enterprise Data Warehouse blog. Northwestern
Medical Enterprise Data Warehouse. http://edw.northwestern.edu/ (accessed 18
Aug 2011).

12. Birman-Deych E, Waterman AD, Yan Y, et al. Accuracy of ICD-9-CM codes for
identifying cardiovascular and stroke risk factors. Med Care 2005;43:480e5.

Carroll RJ, Thompson WK, Eyler AE, et al. J Am Med Inform Assoc (2012). doi:10.1136/amiajnl-2011-000583 7 of 8

Research and applications

 group.bmj.com on February 29, 2012 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


13. Schmiedeskamp M, Harpe S, Polk R, et al. Use of International Classification of
Diseases, Ninth Revision, vlinical modification codes and medication use data to
identify nosocomial Clostridium difficile infection. Infect Control Hosp Epidemiol
2009;30:1070e6.

14. Kern EFO, Maney M, Miller DR, et al. Failure of ICD-9-CM codes to identify patients
with comorbid chronic kidney disease in diabetes. Health Serv Res 2006;41:564e80.

15. Savova GK, Fan J, Ye Z, et al. Discovering peripheral arterial disease cases from
radiology notes using natural language processing. AMIA Annu Symp Proc
2010;2010:722e6.

16. Penz JFE, Wilcox AB, Hurdle JF. Automated identification of adverse events related
to central venous catheters. J Biomed Inform 2007;40:174e82.

17. Friedlin J, Overhage M, Al-Haddad MA, et al. Comparing methods for identifying
pancreatic cancer patients using electronic data sources. AMIA Annu Symp Proc
2010;2010:237e41.

18. Friedman C, Hripcsak G, DuMouchel W, et al. Natural language processing in an
operational clinical information system. Nat Lang Eng 1995;1:83e108.

19. Denny JC, Smithers JD, Miller RA, et al. “Understanding” medical school curriculum
content using KnowledgeMap. J Am Med Inform Assoc 2003;10:351e62.

20. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge
Extraction System (cTAKES): architecture, component evaluation and applications.
J Am Med Inform Assoc 2010;17:507e13.

21. Zeng QT, Goryachev S, Weiss S, et al. Extracting principal diagnosis, co-morbidity
and smoking status for asthma research: evaluation of a natural language processing
system. BMC Med Inform Decis Mak 2006;6:30.

22. Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the
MetaMap program. Proc AMIA Symp 2001:17e21.

23. Denny JC, Peterson JF, Choma NN, et al. Extracting timing and status descriptors
for colonoscopy testing from electronic medical records. J Am Med Inform Assoc
2010;17:383e8.

24. Harkema H, Dowling JN, Thornblade T, et al. ConText: an algorithm for determining
negation, experiencer, and temporal status from clinical reports. J Biomed Inform
2009;42:839e51.

25. Denny JC, Spickard A, Johnson KB, et al. Evaluation of a method to identify and
categorize section headers in clinical documents. J Am Med Inform Assoc
2009;16:806e15.

26. Kho AN, Pacheco JA, Peissig PL, et al. Electronic medical records for
genetic research: results of the eMERGE consortium. Sci Translational Med
2011;3:79re1.

27. Pharmacogenomics Research Network. Pharmacogenomics Research Network.
http://pgrn.org/ (accessed 18 May 2011).

28. McCarty CA, Chisholm RL, Chute CG, et al. The eMERGE Network: a consortium of
biorepositories linked to electronic medical records data for conducting genomic
studies. BMC Med Genomics 2011;4:13.

29. Xu H, Stenner SP, Doan S, et al. MedEx: a medication information extraction system
for clinical narratives. J Am Med Inform Assoc 2010;17:19e24.

30. Tatonetti N, Denny J, Murphy S, et al. Pravastatin and paroxetine together increase
blood glucose. Clin Pharmacol Ther 2011;90:133e42.

31. Xu H, Jiang M, Oetjens M, et al. Facilitating pharmacogenetic studies using
electronic health records and natural-language processing: a case study of warfarin.
J Am Med Inform Assoc 2011;18:387e91.

32. Denny JC, Smithers JD, Armstrong B, et al. “Where do we teach what?”
Finding broad concepts in the medical school curriculum. J Gen Intern Med
2005;20:943e6.

33. Team RDC. R: A Language and Environment for Statistical Computing. Vienna,
Austria, 2011. http://www.R-project.org (accessed 28 Jul 2011).

34. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
via coordinate descent. J Stat Softw 2010;33:1e22.

35. Sing T, Sander O, Beerenwinkel N, et al. ROCR: visualizing classifier performance in
R. Bioinformatics 2005;21:3940e1.

36. Zou H. The adaptive lasso and its Oracle Properties. J Am Stat Assoc
2006;101:1418e29.

37. Singh JA, Holmgren AR, Noorbaloochi S. Accuracy of Veterans Administration
databases for a diagnosis of rheumatoid arthritis. Arthritis Rheum 2004;51:
952e7.

38. Kullo IJ, Fan J, Pathak J, et al. Leveraging informatics for genetic studies: use of the
electronic medical record to enable a genome-wide association study of peripheral
arterial disease. J Am Med Inform Assoc 2010;17:568e74.

39. Pacheco JA, Avila PC, Thompson JA, et al. A highly specific algorithm for identifying
asthma cases and controls for genome-wide association studies. AMIA Annu Symp
Proc 2009;2009:497e501.

PAGE fraction trail=7.5

8 of 8 Carroll RJ, Thompson WK, Eyler AE, et al. J Am Med Inform Assoc (2012). doi:10.1136/amiajnl-2011-000583

Research and applications

 group.bmj.com on February 29, 2012 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


doi: 10.1136/amiajnl-2011-000583
 published online February 28, 2012J Am Med Inform Assoc

 
Robert J Carroll, Will K Thompson, Anne E Eyler, et al.
 
records
rheumatoid arthritis in electronic health 
Portability of an algorithm to identify

 http://jamia.bmj.com/content/early/2012/02/27/amiajnl-2011-000583.full.html
Updated information and services can be found at: 

These include:

Data Supplement
 http://jamia.bmj.com/content/suppl/2012/02/27/amiajnl-2011-000583.DC1.html

"Supplementary Data"

References
 http://jamia.bmj.com/content/early/2012/02/27/amiajnl-2011-000583.full.html#ref-list-1

This article cites 37 articles, 12 of which can be accessed free at:

P<P Published online February 28, 2012 in advance of the print journal.

service
Email alerting

the box at the top right corner of the online article.
Receive free email alerts when new articles cite this article. Sign up in

Notes

(DOIs) and date of initial publication. 
publication. Citations to Advance online articles must include the digital object identifier 
citable and establish publication priority; they are indexed by PubMed from initial
typeset, but have not not yet appeared in the paper journal. Advance online articles are 
Advance online articles have been peer reviewed, accepted for publication, edited and

 http://group.bmj.com/group/rights-licensing/permissions
To request permissions go to:

 http://journals.bmj.com/cgi/reprintform
To order reprints go to:

 http://group.bmj.com/subscribe/
To subscribe to BMJ go to:

 group.bmj.com on February 29, 2012 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/content/early/2012/02/27/amiajnl-2011-000583.full.html
http://jamia.bmj.com/content/suppl/2012/02/27/amiajnl-2011-000583.DC1.html
http://jamia.bmj.com/content/early/2012/02/27/amiajnl-2011-000583.full.html#ref-list-1
http://group.bmj.com/group/rights-licensing/permissions
http://journals.bmj.com/cgi/reprintform
http://group.bmj.com/subscribe/
http://jamia.bmj.com/
http://group.bmj.com/

