Plenge Lab
Date posted: November 12, 2014 | Author: | No Comments »

Categories: Drug Discovery Embedded Genomics Human Genetics Precision Medicine

I have come across three reports in the last few days that help me think about the question: How many genomes is enough?  My conclusion – we need a lot!  Here are some thoughts and objective data that support this conclusion.

(1) Clinical sequencing for rare disease – JAMA reported compelling evidence that exome sequencing identified a molecular diagnosis for patients (Editorial here).  One study investigated 2000 consecutive patients who had exome sequencing at one academic medical center over 2 years (here).  Another study investigated 814 consecutive pediatric patients over 2.5 years (here).  Both groups report that ~25% of patients were “solved” by exome sequencing.  All patients had a rare clinical presentation that strongly suggested a genetic etiology.

(2) Inactivating NPC1L1 mutations protect from coronary heart diease – NEJM reported an exome sequencing study in ~22,000 case-control samples to search for coronary heart disease (CHD) genes, with follow-up of a specific inactivating mutation (p.Arg406X in the gene NPC1L1) in ~91,000 case-control samples (here).  The data suggest that naturally occurring mutations that disrupt NPC1L1 function are associated with reduced LDL cholesterol levels and reduced risk of CHD.  The statistics were not overwhelming despite the large sample size (P=0.008, OR=0.47). …

Read full article...


Date posted: May 17, 2013 | Author: | No Comments »

Categories: Drug Discovery Human Genetics

After all, baseball is a metaphor for life.

Bill James developed the “Keltner list” to serve as a series of gut-check questions to test a baseball player’s suitability for the Hall of Fame (see here).  The list comprises 15 questions designed to aid in the thought process, where each question is designed to be relatively easy to answer.  As a subjective method, the Keltner list is not designed to yield an undeniable answer about a player’s worthiness.  Says James: “You can’t total up the score and say that everybody who is at eight or above should be in, or anything like that.”

The Keltner list concept has been adapted to address to serve as a common sense assessment of non-baseball events, including political scandals (see here) and rock bands like Devo (see here).

Here, I try out this concept for genetics and drug discovery.  That is, I ask a series of question designed to answer the question: “Would a drug against the product of this gene be a useful drug?”  I use PCSK9 as one of the best examples (see brief PCSK9 slide deck here).  I also used in on our recent study of CD40 in rheumatoid arthritis, published in PLoS Genetics (see here).…

Read full article...


I read with interest a recent publication by Khandpur et al in Science Translational Medicine on NETosis in the pathogenesis of rheumatoid arthritis (download PDF here).  It made me think about “cause vs consequence” in scientific discovery.  That is, how does one determine whether a biological process observed in patients with active disease is a cause of disease rather than a consequence of disease?

In reading the article, I learned about how neutrophils cause tissue damage and promote autoimmunity through the aberrant formation of neutrophil extracellular traps (NETs).  Released via a novel form of cell death called NETosis, NETs consist of a chromatin meshwork decorated with antimicrobial peptides typically present in neutrophil granules.  (Read more about NETs on Wikipedia here.) 

Mendelian randomization is a method of using measured variation in genes of known function to examine the causal effect of a modifiable exposure on disease in non-experimental studies (read more here).  It is a powerful to determine if an observation in patients is causal.  For example, if autoantibodies are pathogenic in RA, then DNA variants that influence the formation of autoantibodies should also be associated with risk of RA.  This is indeed the case, as exemplified by variants in a gene, PADI4, the codes for an enzyme involved in peptide citrullination (see here). …

Read full article...