Plenge Lab
Date posted: June 18, 2013 | Author: | No Comments »

Categories: Human Genetics

In science, a pendulum swings as new discoveries are made and old hypotheses proven false.  Unfortunately, the arc of this swing is often unrelated to the facts, but more tied to the prevailing views of what is and what should be.  With incomplete information, the pendulum may swing too far in one direction – for example, towards the view that genome-wide association studies (GWAS) will identify the vast majority of genetic risk for complex traits in relatively small cohorts (now defined humbly as tens-of-thousands of case-control samples).  After an initial wave of discoveries – or lack thereof – the pendulum swung too far in the other direction: disease-associated variants from GWAS cannot explain most of the estimated heritability in complex traits, therefore rare variants of large effect must be the root genetic cause of complex traits.

Too often, science creates an artificial mirror image of data interpretation.  If one hypothesis is not true, then the opposite must be true.  If it is not common variants, then it must be rare variants; if it is not genetics, then it must be epigenetics; if it is not the host, then it must be the microbiome; and so forth.   Too often, incomplete data to support one model results in a knee-jerk reaction towards an orthogonal model, even if there is little evidence to support the model. …

Read full article...


Date posted: June 4, 2013 | Author: | No Comments »

Categories: Drug Discovery Human Genetics Precision Medicine

As I sought advice from colleagues about my career, I was frequently asked if I would prefer to work in academics or industry (emphasis on the word “or”).  The standard discussion went something like this:

ACADEMICS – you are your own boss and you are free to chose your own scientific direction; funding is tight, but good science still gets funded by the NIH, foundations and other organizations (including industry); the team unit centers around individuals (graduate students, post-docs, etc), which favors innovative science but sometimes makes large, multi-disciplinary projects challenging; there is long-term stability, including control over where you want to work and live, assuming funding is procured and good ideas continue; your base salary will be less than in industry, but you still make a good living and there are opportunities to consult – and maybe even start your own company – to supplement income.  Bottom line: if you want to do innovative science under your own control, work in academics – as that is where most fundamental discoveries are made.

INDUSTRY – there are more resources, but those resources are not necessarily under your control (depending upon your seniority); the company may change direction quickly, which changes what you are able to work on; while drug development takes 10-plus years, many goals are short-term (several years), which limits long-term investment in projects that are risky and require years to develop; the team unit centers around projects (e.g., making drugs), so there is less individual glory but more opportunities to do multi-disciplinary projects; there is more turn-over in industry, which means you may need to switch jobs (including location – where you want to live) in several years. …

Read full article...